
Customization &
Programming Guide

by
Tony Woozley

Revised for Nota Bene 8.0
by

Mary Bernard



This revised edition is dedicated
to Tony Woozley, mentor and friend,
and to the memory of Dorothy Day



Preface to the Revised Edition of the CPG

The Customization and Programming Guide is not the work of one person or even of two 
people. Some of it has been around since Nota Bene 1, such as the examples using 
‘WEBER.DOC’ in Chapter 4. Some of it may have come from a XyWrite manual. XyWrite 
is the word-processing program from which Nota Bene derived. Like NB it crossed the DOS 
barrier and became a Windows program; unlike NB, it is no longer commercially available. 
(Nota Bene and XyWrite are extremely similar; they both use the XyWrite Programming 
Language—XPL. NB uses it less in Windows than in DOS versions, but there are current 
examples in the *.AUX files in the main NB program folder. All but a few XyWrite codes 
(mostly DOS-related) work in NBWin.)

The first three versions of Nota Bene had a terse XPL programming section, the Customiza-
tion and Programming Guide (CPG). NB 4, released in 1993, had a superb manual, the Big 
Black Book, but no programming guide.  However, the company asked Tony Woozley, a 
retired professor of philosophy at the University of Virginia, to revise and update the old 
Guide. Tony rewrote and expanded it. In his hands it became lucid, elegant and informative, a 
true guide for the beginner as well as a work of reference for more advanced XPL program-
mers.

Nota Bene became a Windows program in 1998, with version 5.0 of the program. There was 
still no programming section in the manual, now called Help, and online rather than printed. 
XPL still worked (and works) in NBWin, though some user programs written for NB DOS 
needed minor revision. Tony’s version of the CPG needed revising, too. Almost all the 
information about XPL was still valid, but a few older codes weren’t, and it had whole chap-
ters on NB DOS features that didn’t work in NBWin, such as function OV.

Eight years late, here is a revision of the CPG manual for NBWin, up to date for version 8. It 
is still largely Tony’s Guide; I have tried to match the tone and spirit of his version, insofar as 
possible.

I want to thank Carl Distefano for letting me include excerpts from his end of our email cor-
respondence as Chapter 10, a ‘Miscellany of XPL Information,’ and  Robert Holmgren for 
letting me include his ‘Compendium of XyWrite/NB Variables’ as Chapter 9. I owe them 
both thanks for their illuminating answers to my XPL questions over the past several years; 
and I especially want to thank Robert for debugging and hastily editing this file at the last 
moment.

I am grateful to the many members of the Nota Bene Users’ list whose answers to my ques-
tions have helped me to make the Guide as accurate as possible. Particular thanks are due to 
Jukka-Pekka Takala, Joel Lidov, Michael Norman Jannik Lindquist and Rick Penticoff; and 

Preface to the Revised Edition                                                                                       i



to Steve Siebert, creator and chief programmer of Nota Bene, who answered questions about 
codes while getting NB8 out of beta. I’d like to thank him and Anne Putnam, president of 
Nota Bene, for letting me add  information about customization and programming, and links 
to this Guide and other XPL resources, to NB8 online Help.

Printing the CPG

The Guide is carefully formatted for printing on both European A4 and American 8½" x 11" 
paper. Each page therefore ends with a hard page break. If you change them, pages and tables 
may break in awkward places.

If you have downloaded only the PDF version of the CPG, you may want to download 
CPG.NB as well. A few pages contain actual XPL code, which you can view in CPG.NB by 
changing to Codes View—which of course you can't do with the PDF.

Notes on the text of the CPG

I have not changed Tony Woozley’s prefatory note to the DOS version except to update his 
email address and add a footnote about files.

Italicised notes in the text.
These are brief supplements to information that has survived otherwise unchanged from the 
DOS version of the Guide.

 Faux program codes in the text
Since the CPG is formatted to be printable, function codes are represented by uppercase 
character in boldface (e.g., BX) and command brackets by Euroquotes (e.g., «SV01,Y»). You 
cannot copy and paste these characters into a file and run the file as a program. You can 
copy/paste them, but you must then change to Show Codes View, eliminate the strings that 
look (for instance) like: «MB+BO»BX«MDNM», and enter a BX code by doing ‘pfunc bx’.
You can then do a global change of all « and » characters to command brackets (on Ctrl+, 
[Ctrl + comma] and Ctrl+. [Ctrl + period/full stop]). It is actually much easier simply to 
rewrite the program in real code, using the pfunc key and the keys that enter true command 
brackets.

Updates to the newGuide
With luck, the information in this version will be valid for a good while. 

I maintain an unofficial list of all the keyboard and programming codes (or all that I can find) 
that are valid in Nota Bene for Windows. As of July 2006, the entire list is included in Chap-
ter 8 of the CPG. I shall update the list whenever an update of NB includes a significant 
amount of new code,  send it to Rick  Penticoff for posting on his NB Users’ website, and 
notify the NB List (see below) that it is available. You will be able to download it from:  
http://www.penticoff.com/nb/programming/nb-codes.zip. I shall list new codes at the head of 
the file as well as incorporating them into the alphabetical ordering, so that you can quickly 
check what is new.

ii                                                                                      Preface to the Revised Edition

http://www.penticoff.com/nb/programming/nb-codes.zip


Troubleshooting

Errors in the CPG
 Please send corrections to mary.bernard@taffa.eu

Back Up Before Customizing
Before you do any customization whatever, back up. Back up your data files before running 
programs on them; back up your keyboard file before editing it. This is of paramount impor-
tance. It is very easy to make a slip while customizing a keyboard. NB may then load an 
ancient default keyboard with important keys in bewildering places. If you have a backup, 
you can open Windows Explorer and restore your original keyboard file to the 
c:\nbwin\users\default folder.

It is even more important to back up your data files before running a user program, whether 
you’ve written it yourself or downloaded it from another user or the users’ website. Programs 
that work on one system don’t always work on another. Programs you write yourself almost 
always have mistakes at first. Usually they simply don’t run. But some mistakes can swallow 
data, such as the file on which you want the user program to work, or possibly some other file 
or files. And mistakes often cause NB to lock up. So save and back up before you begin 
trying out programs.

Disclaimer
These notes are provided by me, not by Nota Bene Associates, Inc. They have kindly allowed 
me to include them in the Help file, but Nota Bene Technical support cannot help with user 
programs or keyboard definitions that aren’t working.

If you try your hand at programming, you should have enough experience with computers not 
to be too fazed by program and/or computer crashes. They will almost certainly happen as 
you write and test XPL programs—they happen to everyone who tinkers with programming.

If you are stymied, ask for help on the users’ list (for how to join, see p. iv).

If you ask for help

It is hard to read someone else’s XPL program if it is not broken up into lines and 
commented—it is even hard to read one’s own programs a while after writing them. If you 
send a program to the NB user list in hopes of getting help with it, you must comment it—in 
the program, not just in your message. You need to include the purpose of the program, what 
is going wrong with it. You should break it up into lines, and precede each with a description 
of what you intend the line of code to do, e.g.,
 ;*; Label 3. Move cursor Left one character. Backdelete previous character. Insert para-
graph marker
  «lb3»«CL BD ↵
 ;*; Go to Label E
  «glLE»
See p 90 for information on how to comment a program.

Preface to the Revised Edition                                                                                     iii

mailto:mary.bernard@taffa.eu


Online Customization and Programming Resources

Rick Penticoff’s NB Users’ website
This is a major source of tips, manuals, user programs and useful links. It is at: 
http://www.penticoff.com/nb/index.htm

NBKEY.KEY—the Keyboard Table
This table shows the key assignments of all keys in all the shift states (Unshifted, Shift, Ctrl, 
etc.) in NB.KBD as delivered. You should print it out if you are doing keyboard customizing. 
It is in C:\NBWIN\DOCUMENT\SAMPLES.

Greg Polly’s Tutorial
Greg Polly has written a basic tutorial on how to write a program in Nota Bene for Windows. 
It’s at: http://www.penticoff.com/nb/help/howtorun.htm. You should use the codes lists in 
Chapters 2 and 8 rather than his appendix of command codes, which are taken from the DOS 
edition of the CPG.

XYWWWEB.U2
This is an extraordinary compendium of XPL programs, written and maintained by Robert 
Holmgren and Carl Distefano. They came to NB by way of XyWrite IV for DOS, Nota 
Bene’s parent program, which is now maintained by them. It is safe to say that they know 
more about XPL programming than anyone except, perhaps, NB’s own programmers.

The compendium i s  ca l led  XYWWWEB.U2,  and  you  can  download  i t  f rom 
http://www.serve.com/xywwweb/. It contains hundreds of XPL programs. Some of them are 
only for XyWrite (noted in the documentation), but Holmgren and Distefano have worked 
hard at making much of U2 compatible with NB. You install U2 by unzipping it, copying its 
files into your main NB program directory, and copying a string to an empty key definition in 
your keyboard file: a key which will thereafter be your U2 help key. You can then run U2 
programs by typing a mnemonic on the command line and striking your U2 help key.

The XyWrite Programming Language User's Guide
On  th e  X yW W W e b s i t e  yo u  c an  f i n d  a  ve ry d e t a i l e d  p r ogra mm i ng  gu id e : 
http://www.serve.com/xywwweb/XPL.ZIP. It was written for XyWrite IV for DOS, which 
uses a version of XPL that is the same as NB's XPL. (The original CPG described an earlier 
and much less powerful version of XPL.) It  has the disadvantage that you have to know how 
XyWrite differs from NB: for instance that F5, not F9, goes to the command line, and that 
Phrase keys are called Save/Gets. But it is a useful resource for anyone who gets serious 
about XPL programming.

The Nota Bene users’ list
This is a helpful and friendly group of NB users, from complete novices to people who have 
been using the program for many years, have done a good deal of NB customization and pro-
gramming, and are happy to share their experience. There is no such thing as a stupid ques-
tion on the NB list, and you won’t be told to Read The Manual.

For more information, or  to subscribe, go to: 
http://wnk.hamline.edu/mailman/listinfo/notabene

iv                                                                                     Preface to the Revised Edition

http://www.penticoff.com/nb/index.htm
http://www.penticoff.com/nb/help/howtorun.htm
http://www.serve.com/xywwweb/
http://www.serve.com/xywwweb/XPL.ZIP
http://wnk.hamline.edu/mailman/listinfo/notabene


You can browse the List archive at: http://www.penticoff.com/nb/help/howtorun.htm

Jukka-Pekka Takala’s website
J u k k a - P e k k a  T a k a l a  i s  a  l o n g - t i m e  u s e r  o f  N o t a  B e n e .  H i s  w e b s i t e , 
http://www.helsinki.fi/~jtakala/notabene.html, has some useful programs, especially 
unbal.run, which finds unbalanced command brackets better than NB’s own ‘Go, Illegal 
Format Code’ dialog. (His BACKUPDIR.RN5 is also very good, especially if you want to 
b a c k  u p  e a c h  c h a n g e d  v e r s i o n  a s  y o u  s a v e  i t  ( I  h a v e  ‘ 3 1 = b x , r , u , n , 
,C,:,\,n,b,w,i,n,\,X,P,L,\,B,A,C,K,U,P,D,I,R,.,R,N,5,q2’ on Ctrl+S instead of NB’s own Save 
definition).

The Nota Bene Dragonfly

Nota Bene Associates was called Dragonfly Software for the first ten years of its life. A 
dragonfly was part of the logo and appeared on NB’s stationery; users became attached to it. 
With version 8.0 the dragonfly has returned to hover on the program’s icon, and on the cover 
sheet of this Guide.

The typeface of the dedication, and of ‘Nota Bene’ on the title page,  is NB Daylight, a font 
commissioned by Nota Bene in memory of Dorothy Day, a long-standing and much-missed 
user of the program and member of the Nota Bene List.

Mary Bernard
mary.bernard@taffa.eu
12th April, 2006

Preface to the Revised Edition                                                                                      v

http://www.penticoff.com/nb/help/howtorun.htm
http://www.helsinki.fi/~jtakala/notabene.html
mailto:mary.bernard@taffa.eu


Prefatory Note

by Tony Woozley 24 December 1994
cad2m@cms.mail.virginia.edu

This collection needs a little explanation. It is more about myself than I would like, but I can-
not avoid that. In early 1992 I was invited by Deborah Reumann, on behalf of Nota Bene, to 
revise and expand the Programming chapter of their Customization & Programming 
Guide; I had misgivings about my competence to undertake the task, but for reasons that will 
appear below I accepted, and began work immediately. At a much later stage Steve Siebert 
asked me also to revise the preceding three chapters of the Guide. I agreed to tackle the first 
two chapters (General Customization, and Keyboard Customization), but declared myself 
unfit for Printer Customization, as there was far too much that I did not know about too 
many printers and printer drivers. Later, Tony St. Quintin undertook that task, but I do not 
know whether he had begun it before his health required him to give up his job as Nota 
Bene’s UK agent; I have failed in attempts to contact him.
More than a year ago I sent to Steve Siebert files covering the Programming chapter; and six 
months ago I sent him a revision of those, plus files covering the General Customization 
and Keyboard Customization chapters, with in addition a new chapter, on Help File 
Customization. I regarded my job as finished, except for making alterations and corrections, 
as required or recommended by Steve. In fact, as far as I know, nothing has since been done; 
and I do not know whether the files I sent to Nota Bene have even been read by anybody 
there. It would be easy to criticize them for that, but I am disinclined to, because I know 
something of the problems that they have had in re-establishing themselves in New York, and 
because a book of the kind that I have produced has to be low on their list of priorities: inter-
est in, and a desire to learn something about, XPL programming, are bound to be confined to 
a small minority of NB users; and on a cost-benefit calculation the book would now, and for 
an indefinite period ahead, rate very low. On the other hand, I have good reason for wanting 
to get it off my shoulders.

So, I have decided to deposit all the files into our SimTel archives, where they will be avail-
able to any users interested in seeing them; and that will not preclude Nota Bene from pub-
lishing them, or something based on them, later.

The reason why I undertook the job in the first place was that I was bothered by the knowl-
edge that there were so many NB commands that were undocumented, and unknown to most 
users. I wanted to do what little I could to repair that. For me it all began with a talk that 
Steve Siebert gave at the University of Virginia in April 1991. In the course of informal con-
versation afterwards he enthusiastically introduced a new string of XPL code, called Extract 
String, and also Parsing String, which had originated in XyWrite, and was now available in 
NB. I don’t think any of us followed his brief exposition of it, but I took away from the meet-
ing a scrap of paper on which he had written it down. This was all that it was:

«xs00,01,02,03,04»
I couldn’t make head or tail of it, but much later, with the help of something written about 
XyWrite, I managed to work it out. It is one of the most ingenious and versatile codes in the 
whole XPL collection, and has been invaluable to me ever since, especially when used recur-
sively, as in
«xs00,01,02,03,04»«xs04,01,05,03,06»....

vi                                                                              Prefatory Note to the 1994 Edition

mailto:cad2m@cms.mail.virginia.edu


I passed it on to our then-guru, Itamar Even-Zohar; and that was the first and only time that I 
have ever taught him anything about NB. A description of i t  can be found in 
XPLCALLS.DOC in this collection, and an example of its use in XPLSAMPL.DOC. There is 
also a full account of it in XPL.DOC (contained in NB-XPL01.ZIP) in our SimTel archives.

The point of that story is that it illustrates how much there is in NB, that is unknown to 
almost all its users, and that will remain unknown until documentation is made available to 
them. In what I have written I have tried to supply some of that. In that particular case four 
years have passed since the string of coding was introduced; but it is totally unknown to 
almost everybody not on this list, and probably also to a good many who are.

Contents, and Conventions

The file CONTENTS.TBL1 shows the list of contents that the book is intended to have, with 
in the third column the names of my files that match the proposed chapters of the book.

It should be noted that, as in the original Customization & Programming Guide, what 
appears to be XPL coding in the text is not actual XPL coding, but a textual representation of 
it: the apparent functions are just the appropriate mnemonic characters in Boldface type, and 
the apparent opening and closing command brackets are European quotes. That makes read-
ing of the files on screen easier, and makes printing of them possible. But, in any instance, 
the apparent XPL coding can be converted to actual XPL coding by running on it the program 
TXT2XPL which is included here. To use it on any pseudo-XPL string or program in any of 
the files, first copy the string or program to a new file, and then run TXT2XPL on that. If you 
run it on one of the actual files in this collection, the program will convert, not just the 
pseudo-XPL string or program that you want converted, but all those that follow in the file as 
well.

For those who do not want the trouble of converting pseudo-XPL to actual XPL programs 
there is one other file in this collection that is not mentioned in CONTENTS.TBL, viz. 
XPLSAMPL.XPL. This contains the sample programs in XPLSAMPL.DOC, in their actual 
XPL format. They will not need transcribing before they can be run as programs.’

Also included is the file XPL2TXT, which converts XPL coding to textual representation of 
it. The same precautions in using it apply.

In a collection of this length, all of it written by a single not particularly skilled person, there 
are bound to be many errors. It would be appreciated if users will call them to my attention, 
so that they may be corrected. I wish to end by expressing my thanks to my friend and fre-
quent collaborator Jukka-Pekka Takala, who has already shown me the need for a number of 
changes. Without his help and initiative I doubt this collection would be finding its way into 
the archive at all.
 ————————————————————————————————————— 
1 There is not now a file CONTENTS.TBL in the CPG; nor does it include the DOS programs 
TXT2XPL,XPLSAMPL.XPL or XPL2TXT.—MB 

Prefatory Note to the 1994 Edition                                                                             vii



   



Table of Contents

Preface to the Revised Edition ................................................................................... i
Notes on the text of the CPG .............................................................................................. ii
 Faux program codes in the text ..................................................................................... ii
 Updates to the new Guide ............................................................................................. ii
Troubleshooting ................................................................................................................. iii
 Errors ............................................................................................................................ iii
 Back Up Before Customizing ....................................................................................... iii
 Disclaimer .................................................................................................................... iii
 If you ask for help ......................................................................................................... iii
Online Customization and Programming Resources ..................................................... iv
The Nota Bene Dragonfly .................................................................................................. v

Prefatory Note to the 1994 Edition, by Tony Woozley ................................... vi

Chapter 1: General Customization ......................................................................... 1
Introduction to Customization ...................................................................................... 1
System Path in Windows 2000/XP .................................................................................... 2
NBSTART.INT ................................................................................................................... 3
 Calling File to Screen .................................................................................................... 3
 Rules for Modifying File ............................................................................................... 4
 Saving File ..................................................................................................................... 4
 Reimplementing ............................................................................................................ 4
 Programs ........................................................................................................................ 5
 Displaying Directory ..................................................................................................... 5
 Calling File(s) ................................................................................................................ 5
Using the LOAD Command ............................................................................................... 5
NB.DFL ................................................................................................................................ 6
 Effect of Settings ........................................................................................................... 7
 DF Settings .................................................................................................................... 7
 Modifying Settings ........................................................................................................ 7
Temporarily Changing Defaults ....................................................................................... 8
 From Command Line .................................................................................................... 8
 Default Command (d xx=#) .......................................................................................... 8
 List of Defaults .............................................................................................................. 8
NB.INI .................................................................................................................................. 9
Hyphenation Exception Dictionary ................................................................................... 9
 Case ............................................................................................................................... 9
 Order .............................................................................................................................. 9
 Breaking Words (HV) ................................................................................................... 9
 Nonbreaking Words .................................................................................................... 10
Phrase Libraries ............................................................................................................... 10
Personal Spell Checkers and Auto-Replace / Auto-Expand ......................................... 10

Table of Contents—Prefaces, and Chapter 1: General Customization                   ix



Chapter 2: Keyboard Customization

Keyboard Table ..................................................................................................................... 13
Short Glossary of Keyboard Table Terms .......................................................................... 13
The Keyboard File ................................................................................................................. 13
 Backup' ............................................................................................................................. 14
 Keyboard Identification .................................................................................................... 15
 Normal Settings ................................................................................................................ 15
Basic Modification Procedure .............................................................................................. 15
 Key Numbers .................................................................................................................... 16
 Moving Definitions and Redefining Keys ........................................................................ 16
 Available Keys ................................................................................................................. 17
State Tables ............................................................................................................................ 17
 Keyboard States ................................................................................................................ 17
 General Rules ................................................................................................................... 18
  Shift and Toggle Keys, and Esc .............................................................................. 18
Key Definitions ....................................................................................................................... 18
 Comma (co) ...................................................................................................................... 19
 Comment Line .................................................................................................................. 19
Character Assignments ......................................................................................................... 20
 Modifying Character Assignments ................................................................................... 20
 Inserting Words ................................................................................................................ 20
Keyboard Functions .............................................................................................................. 21
 Including Command ......................................................................................................... 21
 Including Comma ............................................................................................................. 22
 Paragraph Marker ............................................................................................................. 22
 Tab .................................................................................................................................... 22
 Command Brackets .......................................................................................................... 22
 Function Command .......................................................................................................... 22
Changing the Windows Key Assignments for Control, Shift, Alt and Caps Lock .......... 23
Creating New Tables ............................................................................................................. 23
 Using Caps and Caps-Shift ............................................................................................... 24
  Program to Toggle CapsLock On and Off
Examples of User Key Definitions ........................................................................................ 24
 Assigning a Leader (ld)
 Delete and Backdelete by phrase
 Zoom by 1%
 Abandon a file without having to confirm
 Remove hard page breaks
 Change preceding punctuation mark
 Place marker like NB4’s
Lists of Keyboard Functions ................................................................................................. 26
 Topical list ....................................................................................................................... 27
  ASCII Numbers ...................................................................................................... 27
  Cellular Tables ........................................................................................................ 27
  Command Line ....................................................................................................... 27
  Copying & Moving Defined Block ......................................................................... 27

x                                             Table of Contents—Chapter 2: Keyboard Customization



  Counters .................................................................................................................. 27
  Cursor Movement in Text Area .............................................................................. 27
  Dead Accents .......................................................................................................... 28
  Defining .................................................................................................................. 29
  Deleting ................................................................................................................... 29
  Document Display Modes ...................................................................................... 29
  Math ........................................................................................................................ 30
  Menu/Help/System ................................................................................................. 30
  Phrase Libraries ...................................................................................................... 30
  Print Modes ............................................................................................................. 30
  Searching ................................................................................................................ 31
  System & Miscellaneous ........................................................................................ 31
  Toggling Keyboard Modes ..................................................................................... 31
  Windows ................................................................................................................. 32
  Spelling Checker/Thesaurus ................................................................................... 32
  Redlining/Blue-pencilling ....................................................................................... 32
 Alphabetical List  ........................................................................................................... 33

Table of Contents—Chapter 2: Keyboard Customization                                             xi



Chapter 3: Introduction to XPL Programming and Functions

Introduction ........................................................................................................................... 39
 Text: inserting boilerplate ................................................................................................ 39
 Program Functions ........................................................................................................... 39
 Program “Calls” ............................................................................................................... 40
Program File Commands ...................................................................................................... 40
 Creating New Program ..................................................................................................... 40
 Calling Program to Screen ............................................................................................... 40
 Running Program ............................................................................................................. 40
Loading Programs into Memory .......................................................................................... 40
 Loading on Phrase Key ..................................................................................................... 41
 Loading on “Ampersand Phrase” ..................................................................................... 41
  ldpm filename.run,&x
  Implement by:
   i. func &x
   ii. Mapping ampersand phrase to NB.KBD
 Loading in General Memory ............................................................................................ 41
 Loading via NBSTART.INT ............................................................................................ 41
 Other Ways of Running Programs ................................................................................... 41
  Save on Extended Phrases; Run with «pv#»
  Add to XYWWWEB.U2
 Removing Program(s) from Memory ............................................................................... 42
Normal Text in Program Files .............................................................................................. 42
Program Functions ................................................................................................................ 42
 Keyboard Functions .......................................................................................................... 42
 Program Functions ........................................................................................................... 43
   Searching for Program Functions ........................................................................... 43
   pfunc x 2; add 2-character function code; F10
  Recording Program Functions ................................................................................ 43
 Program-Recording Mode ................................................................................................ 43
 PFUNC Command ........................................................................................................... 45
   Sample Programs: Text & Program Functions ............................................... 45
    (a) Move screen up 10 lines
    (b) Copy from 1 window to next
Program Calls ........................................................................................................................ 46
 Show as Codes
 Information Stored on Phrase Keys .................................................................................. 47
  Survival in Memory:  .......................................................................................... 47
   00-99 and 000-099 - Deleted when program over
   100-999 - Remain during session
   Phrases used by NB: 1300, 1700, and 1900 blocks ......................................... 47
  Checking Phrase Contents: F9 va @[number] F10 ................................................ 47

xii                                 Table of Contents—Chapter 3: Introduction to XPL Functions



 Display Mode to Use ........................................................................................................ 48
  Program to change to adjacent window ................................................................. 48
 Definitions of Terms Related to Program Calls ............................................................... 49
   String   Expression
   Number   Operators
   Variable   Subroutine

Table of Contents—Chapter 3: Introduction to XPL Functions                                xiii



Chapter 4: XPL Program Calls

Saving to a Phrase ................................................................................................................. 50
 1. Save Variable ................................................................................................................... 50
  sv: «sv01,#»
    Saves characters numbers as text
    pv executes
    gt puts in text
    «sv#,» - saves nothing to phrase
    «sv#» - saves define
 2. Save eXpression ............................................................................................................... 51
  sx: «sx#,expression»
    Evaluates numbers, string, variables; stores result
    Reads and identifies typed characters / values
     - text not allowed; use is .................................................................................... 51
    + - concatenates strings
    >, < and == - compare strings
   Text in double straight quotation marks ...................................................................... 52
 3. SUbroutine ....................................................................................................................... 52
  su: «su#,subroutine»
    Saves text or program segment
    Phrase stored by su is treated as a program
     - add CR before final format bracket
    su is almost like sv
     - if su used, pv or gt executes ............................................................................. 53
     - if sv used, only pv executes
     - gt inserts in text or on command line
    Running programs as subroutines ............................................................................. 53
Inserting a Phrase .................................................................................................................. 53
 1. Put Variable ...................................................................................................................... 53
  pv: «pv#»
    If string saved with:
     - sv, pv inserts text (leaves cursor at end of string)
     - su, pv executes
     - sx, pv is taken as a number, and added, evaluated, etc.
    To insert opening command bracket: gt or the @ function ....................................... 54
    «pv00» puts current command line into program:
     - if followed by comma/space, inserts argument
 2. Get Text ............................................................................................................................ 55
  gt: «gt#»
    Inserts string saved with sv at cursor position
    Leaves cursor at beginning of string
    Cannot insert text into an expression ........................................................................ 55
    Only inserts on command line if string was saved with su
    gt executes program saved with su

xiv                                                   Table of Contents—Chapter 4: XPL Program Calls



 3. InSert phrase ..................................................................................................................... 55
  is: «is#»
    Inserts text within an expression
    Used:
     - only within sx and if
     - only if string is text, or numbers-as-text
     - for comparing strings
     - if expression contains  ..................................................................................... 55
      + of concatenation (not of maths)
      ε of inclusion
      @siz, @upr, or @cnv.
Other Calls ............................................................................................................................. 56
 IF ......................................................................................................................................... 56
   if: «if(expression)» (parentheses optional)
 End If .................................................................................................................................. 57
   ei: «ei»
 LaBel ................................................................................................................................... 58
   lb: «lbNAME»
 Go to Label ......................................................................................................................... 59
   gl: «glNAME»
 eXtract String ...................................................................................................................... 59
   xs: «xs02,01,03,04,05»
     Parses string saved on [02]; the parts become usable
       [02] - string to be parsed
      [01] - parsing operator (saved to [01] with sx)
      [03] - receives the part of [02] preceding parsing operator
      [04] - ususally identical with [01]
      [05] - receives the part of [02] following parsing operator
       - parsing operator must be part of initial string
      - if [01] is wildcard, [04] contains its matching text 
      - [01] & [02] may be numbers-as-text, but not numbers
       Program: parses filename .......................................................... 60
       Program: uses xs to insert command brackets .......................... 61
     Using wildcards in ‘replace’ part of ‘ci’ commands ................................. 61
     Enter wildcards as ASCII 16 + appropriate letter
     Using xs recursively: branch, or remove characters from string
      Wildcards ............................................................................................... 61
 ERror ................................................................................................................................... 62
   er: «er»
     Use va$er to show numerical code of an error condition
 EXit ..................................................................................................................................... 62
   ex: «ex»
     Exits from program (back to main program from su)
   ex1: «ex1»
     Stops program unconditionally
 Error Suppression ............................................................................................................... 63
   es: ES 1 suppresses bell and error messages
    ES 0 reactivates both

Table of Contents—Chapter 4: XPL Program Calls                                                     xv



 Read Character .................................................................................................................... 63
   rc: Reads character typed on keyboard
   rk: Ditto, reading it as upper case
      Program segment: pauses to read keyboard input%% .......................... 63
      Program segment using rk ..................................................................... 64
 Cursor Position ................................................................................................................... 65
   cp: «sx#,«cp»»
      Saves cursor position to an expression
 Column Location ................................................................................................................ 65
   cl: «sx#,«cl»»
     Saves current column location to an expression
      - columns run from 0-254
      - can be used to draw a straight line
 JuMP ................................................................................................................................... 66
   jmp: BC jmp #XC
      Program: jumps to any location in a file
 Argument Insert .................................................................................................................. 66
   as: «as»
     Passes string typed after filename on command line to program
 Mathematical Operators ...................................................................................................... 66
   +  -  *  /
     + of addition adds numbers
     + of concatenation joins strings of numbers-as-text
 Comparative Operators ....................................................................................................... 67
   ==  <  <=  >  => <>
    These compare: - numerical values of numbers
        - sort sequence of strings
 Logical Operators ................................................................................................................ 67
   Sign:  Does:     True if:
   &  logical and  - both expressions are true
   !  inclusive or  - either or both expressions are true
   @Xor exclusive or  - one, but only one, is true
   @not  not of the value that follows: (e.g.) a is not equal to b
     - useful sequence: if no error, then...: «if@not(«er»)»«glA»«ei»
 String Operators .................................................................................................................. 68
   Element of ............................................................................................................... 68
   î: «sx#,«is#»ε«is#»»
     Determines if string 1 is contained in string 2:
     If not, result is  -1
     If it is, result is 1-n
      - n is position in string 2 where strings start to match
        - 1st position is 0, second is 1, etc.
      Program segment: choose among several options ................................ 68
   Containment ............................................................................................................ 69
   ð
    Determines if one string contains another

xvi                                                   Table of Contents—Chapter 4: XPL Program Calls



 Size ..................................................................................................................................... 69
   @siz: «sx#,@siz(«is#»)»  - parentheses compulsory
     Checks no. of characters in a string
      Program segment: checks whether function key was struck
 Uppercase ............................................................................................................................ 69
   @upr: «sx#,@upr(«is#»)»
     Uppercases designated string
      Program segment branches if ‘y’/‘Y’ is struck
 CoNVert .............................................................................................................................. 70
   @cnv: «sx#,@cnv(«is##»)» («sx##,«rc»» has been set)
     Converts function call into keyboard function
      Program segment: reports which key has been pressed ........................ 70
Other operators ...................................................................................................................... 70
@ Operators ............................................................................................................................. 70
Values ...................................................................................................................................... 71
 drive and PAth va$pa ............................................................................................... 71
 FIlename va$fi ................................................................................................ 71
 Filename and Path va$fp ............................................................................................... 71
 PaGe number va$pg ............................................................................................... 71
 Line Number va$ln ............................................................................................... 71
 MEmory va$me .............................................................................................. 72
 Window Number va$wn .............................................................................................. 72
 Window Status va$ws .............................................................................................. 72
 File Status va$fs ................................................................................................ 72
 Display Type va$dt ............................................................................................... 72
 ERror Code va$er ............................................................................................... 73
 Format commands vaxx ................................................................................................ 73
 Default settings vaxx ................................................................................................ 73
Miscellaneous Commands ..................................................................................................... 73
 Pause ................................................................................................................................... 73
    p
 Wait ..................................................................................................................................... 73
    wait
Further Details on Programming ......................................................................................... 73
  Memory Required
  Retention in Memory
  Suppressing Display  .................................................................................................... 74
    DX
    NB
    OV
    DX
  Nested Programs ........................................................................................................... 74
  Interrupting Program
  Extended Phrases .......................................................................................................... 74
  Numbers & Strings
  Parentheses
  Paragraph Marker ......................................................................................................... 74

Table of Contents—Chapter 4: XPL Program Calls                                                   xvii



Programming Error Messages ............................................................................................. 75
  —Mismatched operands      —No «ei»
  —Command entry error      —Need ID & expression
  —Label not found       —Repeat w/alphanumeric
Notes: Entering and Searching for Commands, Functions and Special Characters ...... 75
  Embedded Commands ....................................................................................................... 75
  Functions ............................................................................................................................ 76
  Immediate commands ........................................................................................................ 77
 Operators ............................................................................................................................. 77
 Defaults ............................................................................................................................... 77
 Paragraph markers .............................................................................................................. 77
 Command Brackets ............................................................................................................. 78
 Tabs ..................................................................................................................................... 79
 Tilde .................................................................................................................................... 79

xviii                                                 Table of Contents—Chapter 4: XPL Program Calls



Chapter 5: Programming: Sample Programs

1. Program closing all windows ........................................................................................... 80
2. Program closing all windows but current one .................................................................. 81
3. Program comparing screen file with disk file ................................................................... 81
4. Program comparing screen file with disk file ................................................................... 83
5. Program using incremental counter to count words in file ............................................... 84
6. Program using incremental counter to count string frequency ......................................... 84
7. Program using parsing to execute command x times ....................................................... 85
8. Program using subroutine to read user keyboard input .................................................... 86
9. How to store program as subroutine on extended phrase ................................................. 87
10. Load whole phrase library on 1 key ................................................................................. 87
  Program to run programs loaded on ampersand phrases from one key ................ 87

Table of Contents—Chapter 5:  Programming: Sample Programs                            xix



Chapter 6: Programming: Writing Programs

Planning ................................................................................................................................... 88
Building a Program .................................................................................................................. 88
   Program to add line ends to emails .............................................................. 90
Breaking Programs into in Lines ............................................................................................. 90
Embedding Codes in Programs ............................................................................................... 91
   Program to make PFUNC embed codes in file ............................................. 91
  Replacement Dictionary .......................................................................................... 92
Embedding Program Calls in Programs .................................................................................. 92
  Entering calls using Replacement Dictionary ......................................................... 92
   Yes-or-no subroutine ..................................................................................... 93
   User keystroke subroutine ............................................................................. 93
  Searching for command brackets ............................................................................ 93
Setting Defaults ....................................................................................................................... 93
Writing for public use .............................................................................................................. 93
User Options  ........................................................................................................................... 93
Multiple options ....................................................................................................................... 94
Suppressing Video Display ...................................................................................................... 94
Suppressing Error Messages .................................................................................................... 94
Working Messages .................................................................................................................. 95
Comments ................................................................................................................................ 95
Pruning .................................................................................................................................... 95
Labels ....................................................................................................................................... 96
Naming programs .................................................................................................................... 96
When programs don’t work ..................................................................................................... 96
Default MB .............................................................................................................................. 97
If the program goes into a loop ................................................................................................ 97

xx                           Table of Contents—Chapter 6:  Programming: Writing Programs



Chapter 7: Running XPL Programs

Executing the command from the action line .......................................................................... 98
Mapping to a keyboard key ..................................................................................................... 98
Loading directly on a Phrase Key ............................................................................................ 98
Loading indirectly on a Phrase Key ......................................................................................... 99
Loading on an Ampersand Phrase - run by: ............................................................................ 99
  i. &x on the action line:
  ii. &x in keyboard file
  iii a batch program
    Program to load ampersand phrases ...................................................... 100
  iv. Load batch program from NBSTART.INT ................................................. 100
Running Programs from XYWWWEB.U2 ........................................................................... 100
Running Programs from Macro Express menus .................................................................... 100
Running Programs from Library file, using numbers as arguments ...................................... 101
  Benefits of library files
   Sample library program, using numbers as arguments .............................. 101
  Running library program, using OV jl .................................................................. 102
Running Programs from Library file, using text as arguments .............................................. 102
   Sample library program, using text as arguments ...................................... 102
  Explanation of library program ............................................................................. 103
   sv11 sequence
   gl sequence
   Labels
   Adding a program ........................................................................................ 104
   Running a sub-program ............................................................................... 104
   Displaying list of sub-programs .................................................................. 104

Table of Contents—Chapter 7: Running Programs                                                     xxi



Chapter 8: Codes that work in Nota Bene for Windows

Introduction ........................................................................................................................... 105
Operators ............................................................................................................................... 106
Wildcards ............................................................................................................................... 107
Main Alphabetical List .......................................................................................................... 108

Chapter 9: Compendium of XyWrite/NBWin Variables by R.J. Holmgren . 131

xxii                      Table of Contents—Chapters  8 and 9: Lists of Codes and Variables



Chapter 10: Miscellany of XPL Information, chiefly by Carl Distefano

Auto-replace off ..................................................................................................................... 157
SG—Run all phrases from one key ....................................................................................... 157
Func XH at head of files ........................................................................................................ 157
Value of the Wait variable ..................................................................................................... 157
DX ......................................................................................................................................... 158
CH and CI .............................................................................................................................. 158
Commenting string ................................................................................................................ 158
Search Switches ..................................................................................................................... 158
Carriage Return wildcard ....................................................................................................... 158
Negation wildcard .................................................................................................................. 158
Guillemet [chevron/command bracket] wildcards ................................................................ 159
RK and branching .................................................................................................................. 159
Operating on defined blocks in programs .............................................................................. 159
SA% ....................................................................................................................................... 159
Appending to a phrase in programs ....................................................................................... 160
Echo phrase to prompt line .................................................................................................... 160
Prompt can mix text and phrase number ............................................................................... 161
Manipulate variables and values directly .............................................................................. 161
New extensions to VA operator ............................................................................................. 161
Containment operator (replaces epsilon) ............................................................................... 161
Count Up operator ................................................................................................................. 161
GT .......................................................................................................................................... 162
Search for function codes ...................................................................................................... 162
Save text to an sx phrase by enclosing it in double quotes .................................................... 162
How to put your own programs into the U2 file .................................................................... 163
Drag files into NB from Explorer or PowerDesk .................................................................. 163
Keys available for User Keyboard Definitions ...................................................................... 163
Append and APT (APpend to Top of file) commands .......................................................... 164
Function IV ............................................................................................................................ 164
BX and repeat commands ...................................................................................................... 165
BX notes, from Carl Distefano’s BX tutorial ........................................................................ 165
Functions AK and SH in NB ................................................................................................. 166
Runcode ................................................................................................................................. 166
Time programs with function ZT .......................................................................................... 166
Func + wildcard on cmd line or in text .................................................................................. 167
Func NN ................................................................................................................................ 167
Close a prompt window ......................................................................................................... 167
Functions list, from U2 file ................................................................................................... 168
Making print mode changes work on words with apostrophes ............................................. 168
Straight double quotes in programs ....................................................................................... 168
XYWWWEB.U2: if calling it in Page Layout View crashes NB .......................................... 168
Access NB menus from the keyboard .................................................................................... 169

Table of Contents—Chapter 10: Miscellany of XPL Information                           xxiii



Chapter 11: Codes Probably Out-of-Date or for XyWrite Only

Codes  more likely to work .................................................................................................... 170
Codes from list compiled for XyWrite—unlikely to work in NBWin .................................. 174

xxiv                            Table of Contents—Chapter 11: Out-of-Date or XyWrite Codes



Appendix I: NB DOS XPL Error Messages; XyWrite Error Messages

1. General Introduction ...................................................................................................... 179
2. Error Messages ............................................................................................................... 179
  ‘Invalid Format command’ ........................................................................................ 179
    - opening command bracket was entered in Normal mode.
  ‘No command’ or ‘Illegal command’ ........................................................................ 179
    - command has been incorrectly entered on the action line
  ‘Command entry error’ .............................................................................................. 179
   i. Program call wrongly entered.
    a. The wrong call was used, e.g.,
      ‘pv’ instead of ‘is’ (or vice versa)
      ‘sv’ instead of ‘sx’ (or vice versa)
    b. The call was mistyped, e.g.,
      ‘=’ instead of ‘==’
      ‘$wn’ instead of ‘va$wn’
  ii.  a. String operation attempted on a numerical value
    b. Mathematical operation on a string.
  ‘Mismatched operands’ ............................................................................................. 180
    - attempt made to compare a string to a value
  ‘Label not found’  ...................................................................................................... 180
    - «lb...» has been omitted, or doesn’t match its «gl...»
  ‘Need ID & expression’ ............................................................................................. 180
    - syntactical error committed with ‘sv’ or with ‘sx’
    - an opening bracket or a closing bracket is missing
  ‘No «ei»’ .................................................................................................................... 180
  ‘Too many program calls’ ......................................................................................... 180
    - endless loop has been created
  ‘Repeat w/alphanumeric’ ........................................................................................... 180
    - label name is missing from a «gl...» or an «lb...» call
3. Identifying Errors ........................................................................................................... 180
  Don’t confuse the two Error variables, ER and $ER.
  ER has only 2 values, $ER more than 300.
  i. - occurrence of error sets ER to True
   - next command resets it to False.
  ii. - occurrence of error sets $ER equal to an XPL error number.
   - number can be found:

  a. by executing the command BC va $erXC
  b. in program, by saving value of $ER to a phrase, e.g.:
          «sx150,«va$er»»
 - value of $ER always returns to 0, when next command given. 

XyWrite Error Messages Listed Numerically (from the XYWWWEB.U2 File) ........... 182

Table of Contents—Appendix I: Error Messages                                                       xxv



Appendix II: Keyboard Diagrams ................................................................ 200

Index

Index
 .............................................................................................................................................. 201 

xxvi                                Table of Contents—Appendix II: Keyboard Diagrams; Index



 

   



   



General Introduction to Customization

Introduction to Customization

Nota Bene uses four files to implement certain commands and default settings during the 
loading process.  They were either selected or created when you installed the program, based 
on the type of system you have and on the options you selected.  Although you might never 
need to modify any of them, it is a good idea to become familiar with their function and 
structure. That way you will learn how they can be modified to provide greater flexibility to 
certain operations of the program, and you will be better able to detect problems that might 
be related.

The four files are:
 1. NBSTART.INT  can contain commands and programs that the user 
wishes to have executed whenever Nota Bene is loaded
 2. / 3. NB.DFL and NB.INI determine default settings
 4. NB.KBD  determines what the computer does when any given 
key or key-combination on the keyboard is struck.  The user can edit the KeyBoarD file, or 
create new KBD files for special purposes.  Only one KBD file may be loaded  at a time.

(There are other files that can be customized and loaded on startup; they include a personal-
ized spell check/ auto-replace dictionary; phrase libraries; and user programs. They will be 
described later.)

The four files are ordinary text files that can be called to the screen, modified, and stored with 
the file-handling and editing commands.  But:
NB: You must not edit NB.INI directly. Nota Bene writes to it during and at the end of a ses-
sion, and you will get error messages, and possibly compromise NB.INI, if you edit and save 
it. You may well never need to edit it: most customizations can more safely be made through 
the menu dialogs ‘Tools, Preferences’ and ‘View, Interface Options’. If, however, you decide 
to edit it directly, call it under a new name with:

 F9 ne new.ini,nb.ini F10

(where ‘new.ini’ stands for a temporary filename of your choice). Make your changes; save 
the file; close Nota Bene; copy the current NB.INI to a safe place, such as a new folder 
named ‘TEMP’ under the C:\NBWIN\USERS\DEFAULT folder. Now rename NEW.INI to 
NB.INI; and open Nota Bene. If all is well, you can after a time delete the version in the temp 
folder.

If you have NB.DFL onscreen, do not try to change a default using the Tools, Preferences 
menu. You will get an error message when you click OK. (And be sure to back up NB.DFL 
to a safe place if you edit it.)

Remember that storing a modified settings file does not immediately implement the modifi-
cations.  To do that, you must “reload” the table(s) with the corresponding run or load com-
mand(s) (see “Using the load Command” section).

CPG  Chapter 1: General Customization                                                                         1



This chapter starts with a brief explanation of the system path. It is not unique to Nota Bene, 
but it can be usefully modified to include Nota Bene paths.

It then covers the following Nota Bene table files:

NBSTART.INT—contains any commands that you wish to execute whenever Nota Bene 
is loaded.
NB.DFL and NB.INI—implement the program’s default settings (and your modifications , 
made either through ‘Tools, Preferences’ and ‘View, Interface Options’ or directly.

NB.KBD is described in the “Keyboard Customization” chapter.

Other general customization instructions are also included in this chapter.
 ────────────────────────────────────────────────────── 

SYSTEM PATH in Windows 2000 / XP

The Windows NT4 / 2000 / XP System PATH is now managed by entries in the Windows 
Registry, although 16-bit programs like NB can still consult an AUTOEXEC file (now called 
"autoexec.nt", and located—unless you specify an alternative autoexec file—in the system32 
folder).  Autoexec.nt may be used to supply configuration additional to that found in the 
Registry.

It can be very useful to add one or two NB folders to the system path, principally the program 
folder itself and the folder where you keep your XPL programs. Then, wherever you are in Nota 
Bene (perhaps in a folder named C:\NBWIN\CPG), you can run user programs from the com-
mand line without specifying the full path:
 run filename.run
instead of (for instance):
 run c:\nbwin\xpl\filename.run
If your Nota Bene installation is on C:, and you have not modified your program folder name, 
the program folder will be C:\NBWIN. It is a very good idea to keep user XPL programs in their 
own folder: C:\NBWIN\XPL.

The disadvantage of adding to the System PATH is that it slow down your system noticeably if 
you add more than five or six folders.
You can add to the path either through My Computer or by using a freeware tool.

To change the path through My Computer, follow these steps.
1. From the desktop, right click My Computer and click Properties.
2. In the System Properties window, click on the Advanced tab.
3. In the Advanced section, click the Environment Variables button.
4. In the Environment Variables window, highlight the path variable in the Systems Variable 
section (the lower pane) and click Edit.
5. Go to the end of the Variable value line (do not erase what is already there) and add the Nota 
Bene path(s). Each different directory is separated with a semicolon as shown below.
  C:\Windows\System32;C:\Windows;C:\Program Files;

2                                                                          CPG Chapter 1: General Customization



You must specify the full path, e.g., C:\NBWIN\XPL. Remember to put a semicolon at the end 
of the existing line, before typing your addition.  If you know what functions are performed by 
the various folders in the Path, you may reorder them to speed up access to certain folders; but in 
no case should any folder precede the operating system root folder (usually WINDOWS or 
WINNT) or the system folder (usually system[32]).

The maximum length of the combined system and user-defined path variables is
1,023 characters. This does not includes the "path=" portion of either.

Typing the path in the Environment Variables window is a bit fiddly and annoying, because you 
cannot see the whole of the existing path at once. An alternative is to use a freeware tool, such 
as  Sys t em Pa th  Commander ,  (h t t p : / /www.sof tpedia . com/get /Sys t em/Sys tem-
Miscellaneous/System-Path-Commander.shtml)
To add to the path using System Path Commander, you run the program, right click on the 
window, choose ‘Add’, and either type the path or navigate to it with the usual Browse button.

 ────────────────────────────────────────────────────── 

NBSTART.INT

The NBSTART.INT file (“INiTialization”) is a table that provides you with the opportunity to 
implement settings of your choice whenever you load Nota Bene.  Initially it contains no com-
mands, because  the necessary configuration, including loading of the keyboard table and 
default-settings tables, is now performed by NB.INI  before any commands that you might add 
to NBSTART.INT (examples are shown below) would take effect.

Do not rename NBSTART.INT!  (You can use alternative names for alternate versions, but if 
you wish NB to look for this file and auto-load commands that you have entered into it, it must 
bear the name NBSTART.INT.)

The NBSTART.INT table is a “program file” that contains “program functions” and is executed 
with the run command.  To learn more about program files, see Chapters 3 and 7.

I t  s h o u l d  b e  e i t h e r  i n  t h e  p r o g r a m  f o l d e r  ( t y p i c a l l y  C : \ N B W I N )  o r  i n 
C:\NBWIN\USERS\DEFAULT, where there is already an empty NBSTART.INT file for you to 
use. If you keep your NBSTART.INT in the program folder, you should delete the one in 
C:\NBWIN\USERS\DEFAULT,  in case the command to run NBSTART.INT  finds the empty 
file rather than the one you have modified.

 ────────────────────────────────────────────────────── 
Calling to Screen

If you want to check or modify the NBSTART.INT table, call it to the screen as an ordinary file:
 F9 call nbstart.int F10
Specify C:\NBWIN\before the filename if you are not in the C:\NBWIN folder.

CPG  Chapter 1: General Customization                                                                         3

http://www.softpedia.com/get/System/System


 ────────────────────────────────────────────────────── 
Rules for Modifying File

When modifying the NBSTART.INT table, be sure to follow these rules:

Each command except the first line must begin with a “BX” (see below) and must end with a 
“Q2”. It is convenient to put each command on a separate line, in which case you must end each 
line with a comment string (;*;).

Make sure you are in Show Codes View, so that print mode commands will not be inserted into 
the file.

You can use lowercase or uppercase.

 ────────────────────────────────────────────────────── 
BX

BX is a “program function” that “blanks” the command line so that a new command can be 
executed (this is an over-simplification; see p 165 for details). Q2 executes the command.

The BX and apparent space (which is really ASCII 0) are one unit, so the cursor jumps over the 
“X” and space.

 ────────────────────────────────────────────────────── 
Saving File

When you have finished modifying the table:
   F9 sa F10                  (Or do Ctrl+S.)

 ────────────────────────────────────────────────────── 
Reimplementing

To reimplement the modified NBSTART.INT table:
 F9 run nbstart.int F10

If you deleted items from the table, you must exit Nota Bene and reload the program. If you just 
rerun NBSTART.INT, some of the former settings might remain in effect if there are no new 
commands to override them.

NBSTART.INT is less useful than it used to be in earlier versions of NB for Windows. In NB 8, 
settings made via the menus, and saved in NB.DFL and NB.INI, usually override commands in 
NBSTART.INT. For instance, the directory sort order set through Tools, Preferences, Direc-
tories (Command Line) will not be overridden by the line:
 BX order d,rQ2;*;
in NBSTART.INT. The chief uses of NBSTART.INT now are to load the XYWWWEB.U2 pro-
gram compendium (see p iv) and to load programs on ampersand phrases (see pp  41, 99).

4                                                                          CPG Chapter 1: General Customization



 ────────────────────────────────────────────────────── 
Programs

If you have programs that you want either loaded (say, to an ampersand phrase) or run whenever 
you load Nota Bene, you can do that here, by using:
 BX ldpm x:[filename].run,&yQ2;*;  for loading a program on an ampersand phrase
 BX run x:[filename].runQ2;*;  for running a program

 ────────────────────────────────────────────────────── 
Displaying Directory

If desired, you can have a directory displayed as the last step.  There are two ways to do so:
   BX dirQ2;*;
   BC call
Include one space after the call command, so that the cursor will be positioned for typing the 
filename.
   BX dirQ2;*;
   BC call  CC;*;
By adding the CC function as shown, you can have the cursor move down into the directory so 
you can position it on the file you want to call.

Choose the method you most frequently use for calling files.
 ────────────────────────────────────────────────────── 
Calling file(s)

If you want a particular file or files to open whenever you open NB, you can do it with lines of 
this type in NBSTART.INT:
 BX ca [path\file1].nbQ2;*;
 BX ca [path\file2].nbQ2;*;

 ────────────────────────────────────────────────────── 
Using the LOAD Command
These commands were more generally useful in NB DOS, where there were a number of files 
that could be loaded. But it is still useful to know how to load the few remaining files that can 
be loaded from the command line.

There are two types of commands used to load table and other files into memory: the generic 
load command, which can load any type of table file that is properly identified; and ld com-
mands, which are used to load specific kinds of files. There are two types of file for which the 
generic load cannot be used, and the appropriate ld command must be used instead:
 Phrase libraries (filename.lib) can be loaded only with the ldlib command.
   NB:  this command does not load the [phraselib] .LIX file containing the 

phrase-library descriptions, but it can be useful for quick phrase-library changes 
if you know what is on the keys.

   NB: phrase libraries can be saved from the command line with salib, but this 
command does not save the .LIX file. If you significantly modify your phrase 
library, and want to change the descriptions to match, you need to use the menu 
on Alt+F3.

CPG  Chapter 1: General Customization                                                                         5



 Program files (filename.run) can be loaded only with the ldpm command.
   NB: They can be run from the command line with the run command (and in 

other ways, see Chapter 7).
 ────────────────────────────────────────────────────── 
LOAD

The load command can be used to load one or more tables files at a time.  Each table file, how-
ever, must start with a special four-character sequence called a load ID.  These are the load IDs 
for each kind of table file:

File Type Filename Load ID
Keyboard table filename.kbd ;KB;
Personal dictionary filename.spl ;SP;
Default settings file NB.DFL ;PR;

NB: do not load NB.DFL with the load command; you might cause a program crash. Instead, 
quit NB and re-open.

The load ID must be on the first line in a table file, and must be typed exactly as shown, i.e., in 
the sequence of semicolon, capitalized two-letter code, semicolon.  The load ID should be termi-
nated by a paragraph marker (↵).

The load command can be used either to load one or more table files, or to load one or more 
personal dictionary files simultaneously.  To load a group of table files, use:

 F9 load table1,table2,table3 F10
                       (note separating commas; no spaces between comma and following filename)

To load more than one personal dictionary, use:
 F9 load file1.spl+file2.spl+file3.spl F10
                            (note separating plus signs)
If you already have a personal dictionary loaded and want to add another/others to use at the 
same time as the first, put a plus sign in front of the first dictionary file in the list.

 ────────────────────────────────────────────────────── 

NB.DFL

NB.DFL file is a table that implements many of program’s default settings whenever you load 
Nota Bene.  It is automatically loaded by the program before NBSTART.INT takes effect.

As can be seen when you call the NB.DFL table to the screen (preferably under a new name, as 
described on p 1) and scroll  through it, there are many features of the program that you can 
customize.  Some of these were set based the choices you made when installing the program; 
others are initially the same for all computer systems. Many of the settings can be changed as 
desired by modifying NB.DFL.  But, until you have become thoroughly familiar with the opera-
tions of Nota Bene, it is strongly recommended that you make all changes of default settings by 
means of through the menu dialogs ‘Tools, Preferences’ and ‘View, Interface Options’.

6                                                                          CPG Chapter 1: General Customization



If you do edit NB.DFL, follow the new-name procedure described on p 1.

 ────────────────────────────────────────────────────── 
Effect of Settings

The settings implemented by the NB.DFL table affect all files that are called to the screen or 
printed unless the files have contravening commands (i.e., deltas) embedded within them.

If you modify the NB.DFL table, remember that display and printing of previously created 
documents that used the defaults—rather than embedded format commands—might be affected. 
Therefore it is normally best not to change the defaults frequently, but instead to insert actual 
commands in your files whenever you do not want to use the default settings. That way your 
files will always be formatted in accordance with the intended settings.

 ────────────────────────────────────────────────────── 
DF Settings

Most NB.DFL consists of lines setting defaults, along with descriptive comments (on lines 
beginning with a semicolon) and lines containing only a semicolon, the purpose of which is to 
make the file more readable by breaking it up.
The default lines are of the form:
 DF XX=NN
For instance, here are lines setting the page width and length:

; PW is page width
DF PW=8.5in
;
; FD is form depth (page depth)
DF FD=11in

When specified in the NB.DFL table or executed with the default command (see next section), 
these settings must have an equals sign between the command and the value; when executed in a 
file, no space is used.  For example, the form depth (as for legal-size paper) can be set in these 
three ways:

—as permanent default by DF fd=11IN in NB.DFL
—as temporary default by executing default (or d)  fd=11in on command line
—for a specific document by executing fd 11in on the command line to embed the
   command as code.

 ────────────────────────────────────────────────────── 
Modifying Settings

When modifying the settings:

Always use Show Codes View.  Inclusion of a hidden print-mode command or format code on 
any non-comment line will result in incorrect loading.

CPG  Chapter 1: General Customization                                                                         7



Comment lines may be added at any position in the table.  Each such line must begin with a 
semicolon; any line that does not will be interpreted as an actual default setting.

 ────────────────────────────────────────────────────── 
Temporarily Changing Defaults

Defaults can be changed for the remainder of the current Nota Bene session—i.e., until you exit 
or turn off the computer—by using the Menu Line or the default command.  Some changes will 
not become effective until you call the next file to the screen.

It can be convenient to change a default just for the active NB session. You can do so from the 
command line, with a command that is almost the same, except that ‘DF’ becomes ‘default’ (or 
‘d’:). If you are writing programs, you might want  to change the default view for opening files 
temporarily from Page Layout View to Show Codes View. This would do it:

d dt=0

The change will not become effective until you call the next file to the screen. To return to Page 
Layout View in mid-session, you would issue ‘d dt=4’. Neither of these command-line com-
mands will change NB.DFL.

 ────────────────────────────────────────────────────── 
Default Command

The form of the default command is:
 

                ┌——— command/setting
                │  ┌—— value (if any) after “=”
                    
 F9 default xx=# F10                   or, F9 d xx=# F10

Where xx stands for the letters of the default (e.g., DT) and # for the specifying number(s) or let-
ter(s) (e.g., DT=4, or FD=11.7in)
You can issue command-line commands in upper or lower case or a mixture of both.
Changing the page-layout defaults this way will not affect a file that is already on screen.

Can’t set value with default — The command specified with the default command was 
improperly typed or cannot be input as a default.  Be sure to use an equals sign (as default 
fd=11in) rather than a space (as fd 11in) between the command and values.

You can use the default command to test a setting before permanently modifying it in NB.DFL. 
NB: Changing a display mode (e.g., ‘d dt=0’ to change the session default to Show Codes View) 
does not change the view of currently open files, only of any that you create or open after issuing 
the command.

8                                                                          CPG Chapter 1: General Customization



 ────────────────────────────────────────────────────── 
List of Available Defaults

Chapter 8 includes all the defaults I have been able to find, with brief descriptions.

 ────────────────────────────────────────────────────── 

NB.INI

NB.INI loads your default printer and Windows fonts. It contains such settings (made through 
the menus) as your foot/endnote defaults; the folder NB opens in by default; whether or not you 
have Auto Check and/or Auto Replace turned on, the default sort order for directories; what 
beeps you have turned on (overstrike, etc.); your default phrase library and keyboard. It is where 
NB keeps the list of recently opened files that shows at the bottom of the File Menu; and where 
it lists the  format and contents of its toolbars. It is possible to edit it by hand,  but inadvisable, 
unless there is a setting that you cannot make stick through the menus.

 ────────────────────────────────────────────────────── 

Hyphenation Exception Dictionary

When automatic hyphenation is in effect, before breaking a word according to the algorithms, 
the program first checks the hyphenation exception dictionary to see how to break the word, or 
whether it should be broken at all.

A hyphenation exception dictionary (such as those supplied with the program) is an ordinary h 
text file that can be called to the screen and modified, if you want to specify where particular 
words should be broken. See Nota Bene online Help for full instructions.

 ────────────────────────────────────────────────────── 
Case

It makes no difference whether a word is lowercased or uppercased.  However, capitalizing 
words that normally are capitalized makes it easier for you to find them in the list.

 ────────────────────────────────────────────────────── 
Order

Although the list does not need to be in alphabetical order, you can use the sort command to h 
alphabetize the list from time to time, so that it will be easier to find words.

 ────────────────────────────────────────────────────── 
Breaking Words

If you want a particular word to break, insert a soft hyphen with Ctrl+/

CPG  Chapter 1: General Customization                                                                         9



 ────────────────────────────────────────────────────── 
Nonbreaking Words

If you don’t want a word to break at any point, insert a soft hyphen just  before the word with 
Ctrl+/.

 ────────────────────────────────────────────────────── 

Phrase Libraries
This section will make more sense in the context of the XPL programming chapters.

The general topic of using, loading and saving phrase libraries is covered in online Help. This 
section is designed to supplement that information. It concerns what happens when you click 
‘Show Options’. The only difference is that there appears, just above the bottom line of buttons, 
a line with four choices:
 Save as Program      Insert: Command      Set Command     Key Function

First click in the type-in box and press Shift+F8 to change to Show Codes View.

Key Function:
Here you type function codes, such as BX, NP. They will immediately appear in the type-in box 
above.

Insert: Command
In the box beside this you enter embedded commands. Enter them in the form:
 pv 01         md +bo [note space in each command]

Set Command
After typing an embedded command in the Insert: Command box, click this button to place the 
command in the type-in box above, as (in Show Codes View) «PV01», «MD+BO».

Save as Program 
Saves the program you have just written in the box (or saved to a phrase key) as a program, 
rather than as literal text. If you do not check this box, then the program will be inserted into 
your file, rather than run.

On the other hand, it is easy enough to type the whole program into the type-in box (except the 
function codes, which you cannot input here except by using the Key Function box). Even in 
Show Codes View you will get an error beep as you enter command brackets, but if you can put 
up with that, it is quicker than the Insert Command/Set Command procedure.
Command brackets are also called format brackets, chevrons, double angled brackets or guil-
lemets by long-standing Nota Bene or XyWrite users. You may encounter any of those names in 
the explanatory matter that accompanies user programs. Likewise, codes enclosed in command 
brackets may be called deltas. 

Quicker still, if you want to save a program on a phrase key, is to write it in NB, highlight it, 
save it to a phrase key, open the phrase-library dialog with F3, highlight the phrase, click ‘Show 
Options’ and  tick ‘Save as Program

10                                                                        CPG Chapter 1: General Customization



NB: This is not a quick or sensible way to write XPL programs or save them to phrase keys. I 
include it because (a) the topic is not covered in online Help; (b)  if you have saved a program to 
a phrase key (as described in later chapters), it can sometimes be quicker to modify one small 
part of it in this dialog than to open the program, modify it, reload it on the phrase key and save 
the phrase library; and (c) this is the only easy way to modify a program which you have saved 
to a phrase key and erased from your hard disk.

 ────────────────────────────────────────────────────── 

Personal Spell Checkers and Auto-Replace / Auto-Expand

Again, this topic is well covered in online Help. What follows is a few notes about using auto-
replace (or auto-expand).

1. The procedure for adding expansion pairs that is described on the ‘Auto Expand’ page of 
Help is slow and cumbersome. Your user spell file is an editable text file. Call it to the screen 
(you should probably keep it in C:\NBWIN\USERS\DEFAULT), make sure auto-expand/auto-
replace is turned off, and type the expansion pair. You can put expansion pairs anywhere in the 
file. Maintenance is easiest if the pairs are in alphabetical order—you can put them in the right 
place, or put them at the end of the file and issue a ‘sort’ command. 

You may want to put short-term pairs (e.g., specialised terms that you will use for one project 
only) at the end of the file, where you can quickly erase them when you are done with them.

The abbreviation must not include spaces, punctuation or formatting codes, but can include 
numbers.. Put one space between the abbreviation and the expansion string—which can contain 
spaces, punctuation or print formatting codes:

newb New Brunswick
3gm great-great-great-grandmother

 dca David Cameron’s Adventures

2. Online Help suggests using auto-replace for long names or phrases. For me, it shines as a way 
of speeding up the typing of the words I use most. I do auto-expand long phrases, but the real 
time-savers are the commonest words in the language:

CPG  Chapter 1: General Customization                                                                       11

o of
mr more
i I
y you
ty they
h he
s she

w with
f for
bs beside
bss besides
bt between
b but
u and

tho though
tre there
ev every
feb February
mond Monday

and hundreds of others, including every common contraction (apostrophes slow down typing 
no end):

dsn doesn’t
dnn don’t
cnn can’t

il I’ll
hl he’ll
wv we’ve

cdn couldn’t
hsn hasn’t
hvn haven’t



Of the first six words of the  the string, ‘and hundreds of others, including every’ only one 
was typed in full. What I actually typed was: ‘u hundreds o ots, incl ev’.

NB: I have arranged the above expansion pairs in columns to save space; in a .SPL file each 
must be on a line of its own.

3. If you use auto-replace in this manner, with single or double-letter abbreviations, you need 
to be able to turn it off easily. I have it turned on by default, but I’ve changed the key defini-
tion of Ctrl+H (which is duplicated on Ctrl+Shift+H) to ‘35=az’, which toggles auto-replace 
on and off.

4. You can turn off the auto-correct/replace beep. Tools, Preferences, Sounds.

5. You can have different .SPL files for different purposes. Besides my everyday spell file,  
ABBREV.SPL, I have EMAIL.SPL (identical to ABBREV.SPL, except that the contractions 
have straight apostrophes, not curly ones); CDS.SPL, for entering conductors, composers, 
etc. into IbidPlus; XPL.SPL for entering programming-code strings into programs (see 92 
below); and BOOK.SPL. This last is a only spell checker, not an abbreviation-expansion 
file—it contains words like Maliseet and Munsterberg that are in my book but not in the main 
dictionary, so that I can spell-check the book  without being stopped every few paragraphs.

12                                                                        CPG Chapter 1: General Customization



Introduction to Keyboard Customization

The Keyboard is a good place to start customizing. Keyboard customization is easier than 
XPL programming, and the keyboard table itself contains lots of examples.

Keyboard Table

The “keyboard table” is a file consisting of “keyboard functions” that are loaded into 
computer memory to tell the computer exactly what to do when each key is pressed—
either by itself or when a shift-type or toggle key is used.

Short Glossary of Keyboard Table Terms

Keyboard table—a file with extension .KBD, which defines what the keys and key combina-
tions do in NB in all the keyboard states.

Keyboard state—In the unchanged NB.KBD these are: Unshifted; Shift; Caps; Shift+Caps; 
Ctrl; Ctrl+Shift; Alt; Alt+Shift; Ctrl+Alt; Ctrl+Alt+Shift.

Shift state—the same as keyboard state.

State table—keyboard state/shift state

Keyboard functions—two-letter mnemonics that stand for XPL functions. They are used 
within keyboard tables to tell the program what editing or other operation to perform when a 
key is pressed. For instance, bc goes to the command line, removing any text that was on it (it 
can stand for ‘Begin Command’ or ‘Blank Command’ ) and xc executes a command typed on 
the command line (it stands for eXeCute).

Comments, commenting—Every line in a keyboard table that begins with a semicolon is a 
comment, and will be ignored by NB. You can add as many comments as you wish.

Key definitions—These start with a number followed by an equals sign, followed by code 
and text, separated by commas. Each shift state consists of a number of key definitions.

Key assignments—the same as key definitions.

The Keyboard File

Nota Bene’s “standard” keyboard table is  cal led NB.KBD; i t  is  in  the folder 
C:\NBWIN\USERS\DEFAULT. You should keep any other keyboards that you make in the 
same folder. Alternative keyboard tables (which also use the .KBD extension) can be 
installed. A number of language-specific keyboard tables come with Nota Bene, including 
British English, German, Dutch, French, Spanish, Italian and quite a few more. A XyWrite 

CPG Chapter 2: Keyboard Customization                                                                13



keyboard is also available. You can load them via Tools, Keyboards, Select Active; you can 
save the active keyboard table as the default via Tools, Keyboards, Select Defaults.

The Nota Bene keyboard controls most functions including text entered on the screen, but the 
Windows keyboard controls text entered in the dialog boxes. If you are loading one of the 
Nota Bene foreign language keyboards, you should also load the corresponding Windows 
keyboard. Keyboards that use the Hebrew, Greek and Cyrillic alphabets are available in 
Lingua Workstation, but are not included in Scholar's Workstation.

Modifying
You can easily modify the keyboard table to include other editing keys or character 
assignments—or perhaps to assign existing operations and characters to different keys.  You 
can also create new state tables, thereby considerably increasing the number of keys available 
to you for redefinition.  This chapter explains the structure of the keyboard table and how it 
can be customized to meet your particular needs.

Backup and/or Save under new name
If you want to modify your keyboard table, you should back it up first. It is very easy to make 
a slip while customizing a keyboard. NB may then load an ancient default keyboard with 
important keys in bewildering places. If you have a backup, you can open Windows Explorer 
and restore your original keyboard file to the c:\nbwin\users\default folder.

Better still, copy NB.KBD under a new name, and make changes to the new keyboard. (You 
could call it TRYOUT.KBD, or NEW.KBD.) When you are satisfied with it, you can make it 
the default keyboard table (see above). This is a sensible move, because every update of Nota 
Bene overwrites your old NB.KBD with the latest version. The existing version does get 
saved in C:\NBWIN\USERS\DEFAULT\CUSTOM; but if your customized keyboard has a 
new name, and you have made it the default, NB will honour that, and you will not have to do 
anything at update time except call the new NB.KBD to screen, alongside your customized 
kbd file, and use either the file comparison keys or the Proof, File Comparison dialog to find 
changes to NB.KBD. 

The comparison process will stop not only at each new or changed key def in NB.KBD, but 
also at each of your customizations. This can be a nuisance. I obviate it by saving a copy of 
each new version of NB.KBD as VANILLA.KBD. After an update, and before copying the 
new NB.KBD to VANILLA.KBD, I compare the two files, flag all changes, and copy the 
changed key defs to my customized keyboard file.

Keeping track with keyboard diagrams
It is easy to forget what key customizations you have made. If you do much keyboard 
customizing, you may want to: make a keyboard diagram with NB’s key numbers on each 
key; print out a diagram for each shift state of the keyboard, and label the appropriate keys 
with your customizations. Appendix II is diagrams of the American and British standard 
Windows XP keyboards, labelled with NB’s key numbers.

14                                                                CPG Chapter 2: Keyboard Customization



Keyboard Identification
The keyboard table begins with lines that tell the program:
  that the file is a keyboard table
  the total number of keys on the keyboard
  which keys are shift-type or toggle keys, and the names used for  them in the state
                 tables (see later section)
  what character, if any, should be displayed on the status line

The keyboard table must contain these statements. The only situations in which you should 
modify any of them are:
  to change shift-type keys to “single shot” keys to facilitate use by persons with
            typing disabilities
  if you want or need to make a major customization of the keyboard that requires
            different key identities

Normal Settings
 ┌———————————┐ 
 │;KB;       │ ——— identifies file as keyboard table
...............................................
 │KEYS=107   │ ——— total number of keys (see note 
below)
 │CTRL=29,99 │ —┬— shift-type keys indicated by
 │ALT=6,98   │ —┤  key number only
 │SHIFT=42,54│ —┘
 │CAPS=58,T: │ ——— toggle keys indicated by key
 │          │ “T”, and character for status-line 
indicator
 │MOUSE=105  │ 
 └———————————┘ 

The “load ID” (;KB;) at the beginning of the file is necessary so that the keyboard table can 
be properly loaded with the load command.
The total number of keys is set at 104 so that the standard keyboard table can also be used 
with the IBM enhanced keyboard.  The second values for Ctrl, Alt and Shift are for the 
duplicate keys on the IBM enhanced keyboard. (Any key assignments for keys 85-104 are 
ignored when not using the enhanced keyboard.)
The spelling must exactly match that used in the “table=” lines in the following keyboard-
state tables.

Basic Modification Procedure

To modify a particular key in a given state table (see State Tables below) 
   1. Find the start of that table (table=.......)
   2. Find the key in the table (##=......)
   3. Modify/Insert the key’s definition
   4. Save the modified key table to disk, and reload it with
    F9 save F10
    F9 load <filename>.kbd F10

CPG Chapter 2: Keyboard Customization                                                                15



If you are not sure that you will like a change you are making, save the modified keyboard 
table under a different name (e.g., NB2.KBD) and load it for testing.  If the change is accept-
able, then save it under its original name.

Always use Show Codes View when modifying a keyboard table.  Inclusion of a hidden 
print-mode comand or format delta on any line containing a keyboard identification, table 
identification, or key definition will result in incorrect loading of the keyboard table.

Do not delete the
 ;KB;
load ID at the beginning of the table; if you do, you will be unable to load the table (see 
Using the LOAD Command in General Customization” chapter).

If there is an error in the file as a result of the editing that you have done, a message of this 
form will appear on the status line when you try to load the file:
Bad:——A message indicating that the keyboard table contained an incorrect line.
The message flashes by very quickly; and you may have to repeat the load command several 
times nefore you can catch it.

Key Numbers
The keyboard table consists of key numbers followed immediately by an equals sign and the 
key definition. The numbers are determined by the computer hardware. Appendix 2: Key-
boards contains diagrams of the  standard modern US/UK Windows keyboards, with  Nota 
Bene’s key numbers superimposed.

The program compendium XYWWWEB.U2 provides a quick way of finding out a key code, 
if you have it installed: SCAN + Helpkey will report the scancode of the next key pressed.

 The file C:\NBWIN\DOCUMENT\SAMPLES\NBKEY.KEY lists the existing key assign-
ments in the vanilla keyboard table, NB.KBD.

If you do much keyboard customizing, you may want to make a diagram of the keyboard, 
blank except for the key names (e.g., A, F10) and numbers (e.g., 30, 68); print out one for 
each shift state of the keyboard; and label the keys with your customizations. It is easy to 
forget what customizations you have done, and where they are; and it is easier to shuffle 
through a few sheets of diagrams than to open the keyboard table and trawl through for 
changes, even if you have commented them.

Moving Definitions and Redefining Keys
There is nothing sacrosanct about NB.KBD’s key assignments. With a few exceptions, 
mostly standard Windows keys (see p 163), you can move or copy any keyboard definition, 
whether NB’s or your own, from virtually any key, to virtually any key.

Some key definitions are duplicated in NB.KBD. For instance, function TS, which toggles 
program recording mode, appears four times. It makes sense to keep TS on only one of these 
keys and replace the others with your own key definitions.

16                                                                CPG Chapter 2: Keyboard Customization



NB: Do not put any definitions on the Ctrl, Shift or Alt keys, in any of the keyboard states. 
You can check their key numbers at the top of the keyboard file.

Available Keys
You will probably start with a renamed version of NB.KBD. Some keys in vanilla NB.KBD 
are already free for you to use for your own assignments (though they may have assignments 
in future versions of the program). Any line in the keyboard table that consists only of a semi-
colon and the key number; or of the key number defined as
 ##=NO
or
 ##=NO,NO
is available for the purpose. So are any keys that are not listed by number. For instance, if the 
key numbers in a particular keyboard state table skip from ‘34=....’ to ‘36=....’, then key 35 is 
available. This does not apply to keys like 85 and 89, which simply do not exist; and you 
would do well to steer clear of defining system keys like NumLock (69) or 84 (PrtScn) in any 
keyboard states, at least until you are experienced in keyboard customizing.

It is fairly easy for Scholar’s Workstation users to find empty keys in the keyboard table for 
their customizations—the Ctrl+Alt table has a number of spaces. It is harder for Lingua users, 
but there are some spaces; and you can remove any of the accented characters in the Ctrl+Alt 
and Ctrl+Shift+Alt keyboards that you don't use. With accented characters that you do use, 
but rarely, you could consider inputting them with the F6 Accents and Modifiers popup, thus 
gaining the keys they were on for customizations.

A quick way of finding empty keys is to search for the NoOperation function 'NO', which is 
generally assigned to empty keys.

State Tables

Keyboard States
The keyboard table is divided into separate tables for each of the shifted and toggled “states” 
of the keyboard.  Each “state table” consists of key definitions that create an entirely new 
“keyboard.” Each state table begins with a line identifying the keyboard state:

              ┌——— name of shift or toggle key(s) used with
   table=   following key assignments

The spelling (but not case) of the name must correspond exactly with that in the keyboard 
identification at the very beginning of the keyboard table file.

CPG Chapter 2: Keyboard Customization                                                                17



Nota Bene has 10 different keyboard “states” (the maximum possible is 20), as established 
by the following table-definition lines (shown together here):
 ┌————————————————————————————————┐
 │table=                          │ — unshifted
 │table=CAPS                      │
 │table=SHIFT                     │
 │table=SHIFT+CAPS                │
 │table=CTRL                      │
 │table=CTRL+SHIFT                │
 │table=ALT                       │
 │table=ALT+SHIFT                 │
 │table=CTRL+ALT                  │
 │table=CTRL+ALT+SHIFT            │
 └————————————————————————————————┘

General Rules
Do not define the same key twice in the same keyboard-state table.
If you do define a key twice, the second definition is the one that is used.

The order of key numbers within a state table makes no difference.  However, it is best to 
have them in numerical order, so that you won’t accidentally duplicate an assignment because 
the number was out of sequence.

All keys not listed in a particular state table are dead in that state, but most can be used for 
user key definitions.

The shift and toggle keys (29, 42, 54, 56, and 58) appear in each state table with ASCII 0 
(which looks like a space) assigned.

Esc (key 1 ) should not be modified in any way.

Key Definitions

Basic Format
Within each keyboard state table are the actual definitions of keys. The format for all such 
assignments is:
     ┌————— number of key to be used
     │ ┌——— character and /or keyboard function(s)
    ##=

The numbers are determined by the computer hardware.

If a paragraph mark “↵” is immediately after the “=” sign, the keyboard table will not load. It 
will also not load if a line begins with anything other than:
 #=
 ;
 TABLE=

18                                                                CPG Chapter 2: Keyboard Customization



Types of Definitions
The different types of key definitions are:

Character Assignments: The character typed by the key is specified in correct lowercase or 
uppercase form. Examples: a, A, 5, *, +, !

Editing Operations: A  two-character “keyboard function” or a group of functions is 
assigned to the key to conduct an editing or other operation.  These can include moving the 
cursor to the command line to type and execute a command.
In Nota Bene for Windows, a good many editing operations invoke C:\NBWIN\NBMAIN-
#.AUX files, with string such as:
 14=[U,&X,B,D,U]
 28=FF,&X,C,R
 83=[U,RC,U]
Keys with &+letter cannot be used in Program Recording Mode (see later chapters), but they 
can be copied and modified within a keyboard file.

Comma
Commas—not spaces—are used between characters and/or keyboard functions.  If you want 
to have a key insert a comma as part of a command or text, you must use the co function at 
the point in the definition where the comma is desired (see Keyboard Functions below for 
example).

End of Definition
All material up to the paragraph marker (↵) is part of the definition.  Do not break a key 
definition into more than one line by pressing the Enter key; the line will automatically 
wordwrap if too long.  (If a long definition includes spaces to be typed on the command line, 
a line break might occur at such a space.)

Comment Line
Any line beginning with a semicolon is a comment line. You may also use the NBWin com-
ment string—;*;

When making a modification that you are not sure of, copy the line(s) with the existing 
definition, place a semicolon in front of the original to deactivate it, then modify the copy.  If 
the modification does not work correctly when you save and load the table, you can easily 
reactivate the original definition by removing the semicolon.

You can also add descriptive comments. Keyboard tables make for slow reading and skim-
ming, so you might want to standardise the layout of your comments. This would be one pos-
sibility, with comments indented from the semicolon:
 ;           95 - Delete phrase
 95=yd,xd,df,bx,s,e, , ,^,S,^,S,^,O,^,R,^,O,^,T,q2,df,rd
 ;         100 - Go to end of previous line
 100=pl,le

CPG Chapter 2: Keyboard Customization                                                                19



Or you could use a distinctive character for comments, such as a string of equals signs:
 ; =====95 - Delete phrase (from NB3.KBD)
 95=yd,xd,df,bx,s,e, , ,^,S,^,S,^,O,^,R,^,O,^,T,q2,df,rd
 ; ====100 - Go to end of previous line
 100=pl,le

Character Assignments
A key definition that consists just of a character inserts that character into the file.  This is 
true for:

—keys 2-13, 16-27, 30-41, and 43-53 on the Unshifted, Shift, and Caps Lock key-
boards [in the US version of NB.KBD.  British and European keyboards have different 
assignments for, for example,  key 40].
—accented characters on the Ctrl+Alt and Ctrl+Shift+Alt  keyboards
—certain other keys (e.g., \  on Ctrl keyboard)

Duplicate Assignments
The same character can be assigned to more than one key.  For example, many monetary 
symbols are on the same or different keys on different keyboards.  No matter what key is 
used, the same character is entered into the file.

Adding New Characters
Most of the displayable characters that are part of the ASCII standard and extended character 
sets are already assigned to keyboards.  To assign a character that is not, use Ctrl+Shift and 
the ASCII number on the keypad to enter it into the keyboard table, or use the Compose Key 
with F6.

Modifying Character Assignments
You can modify the character assignments in any way you want.  For example, if you use 
only a few of the letters from the Multilingual keyboards, you can assign them to keys on a 
different keyboard or remove them. It is a good idea to substitute
 ##=NO,NO
for a character if you remove it without substituting a key definition of your own—it is easier 
to see empty keys defined as NO,NO than to hunt for numbers missing from a shift state.

You can also rearrange your keyboard  so that it contains only characters and definitions you 
use, in positions you find easiest to use and remember.  For instance, you could change the 
unshifted and Shift keyboards, as well as the corresponding Caps and Caps Shift keyboards 
so that they would have the Dvorak character arrangement rather than the “Qwerty.”

Inserting Words
To have a key insert more than a single character, the definition must begin with the “no 
operation” (no) keyboard function or another suitable keyboard function:
  ##=A,r,t,i,c,l,e           types only “A”
  ##=no,A,r,t,i,c,l,e     types “Article” in text area or on command line, depending on 
where cursor is
  ##=no,si,A,r,t,i,c,l,e  first changes to Insert mode
  ##=gt,si,A,r,t,i,c,l,e  inserts word in text even if cursor was on command line

20                                                                CPG Chapter 2: Keyboard Customization



Keyboard Functions

“Keyboard functions” are two-letter codes used within keyboard tables to tell the program 
what editing or other operation to perform when a key is pressed.  They occur in keyboard 
tables in three different forms.

1. The two letters of the code are contiguous in the table.  For example, in the unshifted table 
state:

68=xc  executes a command on the command line (This is F10)
91=ti  toggles insert/overstrike (This is the Insert key)
102=cd  moves cursor one line down (This is the Down Cursor key)

2. But many functions are executed through one of Nota Bene’s NBMAIN-#.AUX files. In 
that case the two letters of the function are separated in the table by a comma, and are 
preceded by a code such as &X, &G. For example:
 81=&X,D,N   next page (this is the Ctrl PgDn key)
 60=&X,D,F   start or finish free-form defining (this is the 
F2 key)
3  Still others are enclosed in square brackets+U; some of these include &+letter codes, some 
do not.
 14=[U,&X,B,D,U] backdelete character (this is the Backdelete key)
 83=[U,RC,U]  delete character (this is the Delete key
 46=[U,MW,C,P,U] copy to the Clipboard (key Ctrl C)

 Keyboard functions can be in lowercase or uppercase within the keyboard table.  In this 
chapter they are shown in lowercase and are boldfaced to distinguish them from immediate 
commands, in bold-underline.
 Be sure to distinguish keyboard functions from commands, default settings and pro-
gram calls—many of which often consist of the same letters.
 Keyboard functions can be included within programs as program functions (see “Pro-
gramming Functions” chapter).

Available Keyboard Functions
Topical and alphabetical lists of the available keyboard functions are given at the end of this 
chapter.  If you are not sure of the effect of a particular keyboard function, use the function 
(func) command to experiment (see next page).

Including Command
To have a key execute a command, you must:
 (1) Specify bc or bx to position cursor on blank command line
 (2) Type the command.  Separate the characters (including any spaces) by commas.
 (3) Specify xc or q2 to execute the command.
NB: bc must be used with xc and bx with  q2. You cannot mix them. bx with xc will not 
execute.

Examples of commands on keys:
  ##=bx,r,u,n, ,\,n,b,\,x,p,l,\,l,h,-,q,u,o,t,e,.,r,u,n,q2   runs user program lh-quote.run
  ##=bc,s,t,o,r,e,xc     executes store command

CPG Chapter 2: Keyboard Customization                                                                21



Including Comma
To include a comma as an element of a command assigned to a key, use the co keyboard 
function.  Example:
  ##=bc,i,p,5,i,n,co,5,i,n,xc  to execute ip 5in,5in command

Paragraph Marker
To have a key enter a paragraph marker into the text, either include the paragraph marker 
definition on Unshifted 28:
 FF,&X,C,R
or open Edit, Find and Replace, and use the red and blue button to the right of ‘Find’ to insert 
a Carriage Return (Alone) character in the Find box. From there you can copy and paste it 
into your key definition. (Do not use the regular paragraph marker; it will not work.)

The Carriage Return (Alone) character or FF,&X,C,R string starts a new paragraph or 
executes a command, depending on whether the cursor is on the command line or in the text 
at that point in the key definition. F10  (xc)  always executes a command.

Tab
To include a tab within a key definition, simply insert a tab character with Unshifted [tab 
key].

Command Brackets («...») 
If you want to create a key that searches for a certain type of embedded command, do not use 
the normal command-bracket keys (Ctrl+, or Ctrl+.) to enter the command brackets in the 
keyboard table. Instead, press and hold down Ctrl+Shift, and type the numerals) 174 or 175 
(from the alphanumeric keyboard, not the numeric keypad.  The characters that result will 
look like uppercase ‘E’ and ‘F’.
An example of such an assignment is a key that searches (in Show Codes View) for every 
point in the file where you changed the point size (sz#pt), so that you can check whether the 
value is correct:
 ##=bc,s,e, ,\,E,s,z,\,xc          (where the ‘E’ has been entered with Ctrl+Shift+174)

This method of inputting the command brackets can also be used in programs to search for 
command brackets.

A key assignment that executes an embedded command should not use these characters.  
Instead, define the key using bx and q2 so that it implements the command on the command 
line (see ‘Including Command’, p 21).

Function Command
To test what a keyboard function does before you include it in a keyboard table, or to use an 
unassigned keyboard function at any other time, use the function (func) command:
              ┌—keyboard function
            
   F9 func xx F10

22                                                                CPG Chapter 2: Keyboard Customization



That will execute the function. For instance, func rc will delete the character under the cursor. 
It will work if the keyboard function is of the form ‘xx’, as in bc, xc etc.

Changing the Windows Key Assignments for Control, Shift, Alt and Caps Lock
This is not, properly speaking, a Nota Bene subject. I am including it because a number of 
users on the Nota Bene Users’ List ask how to change these shift-state keys.

Since NB users are constantly pressing key combinations such Ctrl+Shift+Alt or Shift+Alt, 
plus a letter, number, Function key or keypad key, it can be useful to exchange Caps Lock 
and Alt, so that the left-side Ctrl, Sh and Alt keys are in an easy-to-reach line, and can be 
confidently pressed without looking down. Furthermore, since Right Alt,  (unlike like Right 
Shift and Right Control) does not have the same action as its left-side counterpart, you will 
probably, if you are a touch typist, crowd customizations that include the Alt key onto keys 
that can be reached with the right hand. It can therefore be useful to redefine Right Alt so that 
it has the same action as Left Alt.
This cannot be done within NB, alone, but it can be done. There are a number of freeware 
keyboard remapping utilities on the web. I use Keytweak:
 http://webpages.charter.net/krumsick/
—but it is only one of many. Like all online remappers that I have found, it has the limitation 
of being based on the US keyboard. It will happily remap Ctrl, Shift and Alt (not to mention 
the Win key), but it does not recognize key 86.
You do not need to alter the numbers at the head of your NB keyboard table (see p 15 above); 
the rejigging has been done for you, in the Windows Registry.

Creating New Tables
In addition to redefining keys, and defining keys that do not already have definitions assigned 
to them, you can create entirely new state tables (within a maximum total of 20), thereby 
greatly increasing the number of keys available to you for redefinition.  If your keyboard is 
the 104-key keyboard that has the CTRL, SHIFT, ALT keys duplicated, (and if the one key of 
a pair has a different scan code from the other), you can separate the duplicates into distinct 
keys by making changes in the initial table.  For example, you can change the line that reads:
  CTRL=29,99
into two lines
 LCTRL=29 
 RCTRL=99
—thereby making the Left and Right CTRL keys distinct from each other. You now could 
keep LCTRL with the existing CTRL definitions, and create an entirely new set for RCTRL.  
(You must remember to change the name CTRL that occurs in subsequent state tables in 
which it occurs to either LCNTRL or RCNTRL.)  You can do exactly the same thing with the 
SHIFT and ALT keys.  There is one price that you have to pay—that you need to remember, 
when typing, which of your CTRL keys does which; and, if you are a touch typist, that is 
likely to be a considerable handicap.  You might find it preferable to add one or more entirely 
new tables by making some other key(s) into Shift-type keys.  Any key on the keyboard can 
be converted in this way, but the key then loses its present function, which, for almost all 
keys, would be an unacceptable inconvenience.  However, if you have a 104-key keyboard, 
you have a number of duplicate keys, such as *, /, INS, DEL, etc.  You have to insert in the 

CPG Chapter 2: Keyboard Customization                                                                23

http://webpages.charter.net/krumsick/


initial table a line that consists of the name for the key, say SLASH if you wanted to use one 
of the / keys (53 and 94), followed by an = sign and the key’s number, as in:
 SLASH=94.  (The name for a key in the initial table can be anything you please, except 
that it must contain no numbers: F11 would not be acceptable—FXI would be.)  You can 
now create a ‘SLASH=’ table, in which any key will, when you strike it while holding down 
the SLASH key, operate as you have defined it in that table.

There is an even simpler change that might recommend itself to many users.  The CAPS key 
at present is not a Shift-key but a Toggle-key left over from typewriter days: when it is in one 
position all alphabetical characters are typed on the screen in lower case, in the other position 
in UPPER CASE.  But, if like most users, you have very limited use for extensive typing in 
upper case text, that key is being very largely wasted.  If you were to turn it into a shift-type 
key, the keys in the table=CAPS and the table=CAPS+SHIFT state tables would all become 
available for redefinition.  You need to change the line in the initial table from:
 CAPS=58,T:   (removing the T, which marks it as a toggle)
to
 CAPS=58
From now on the CAPS key behaves like a normal Shift-key.  At the same time it is possible 
for you to continue to have the old benefits of the CAPS key by loading the following short 
program on to a phrase key (see  p 10 for discussion of phrase libraries):
 GT «sv09, »«lbRK»«sx50,«rc»»«if«is50»==«is09»»«ex»
 «ei»«sx50,@upr(«is50»)»«pv50»«gLRK»

You can convert that textual representation of the program to the actual program by taking 
two steps (do it in Show Codes View):
 i.  Open a new file, and copy the new program to it.
 ii. Create a program (see chapters on XPL programming) that reads:
   TF XP BX ci /«/E/Q2 BX ci /»/F/Q2
 (where ‘E’ and ‘F’ are input with Ctrl+Shift+174 and 175, as described above)
When you have finished, the new program will, in Show Codes View, have genuine com-
mand brackets surrounding the expressions.

Whenever you strike the phrase key to which you have loaded that program, the characters 
that you then type will appear in uppercase until you cancel it by striking Shift/Alt/PrintScrn

Examples of User Key Definitions

Assigning Leader
You can assign a leader (ld) command to a key to produce a hairline leader (using the “–” 
character):
  ##=bx,l,d, ,–,q2   inserts leader at cursor position,
        separating any existing items on line
  ##=lb,bx,l,d, ,,q2  inserts leader in front of any existing
       items on line
  ##=lb,bx,l,d, ,–,q2,FF,&X,C,R  inserts margin-to-margin leader, forcing
      any existing text down to next line

24                                                                CPG Chapter 2: Keyboard Customization



All of the above key definitions work as indicated if the cursor started in the text area.  To 
ensure the same result if the key is used when the cursor is on the command line, add a gt at 
the beginning:
 ##=gt,lb,bx,l,d, ,–,q2,FF,&X,C,R  inserts margin-to-margin leader even
      if cursor was on command line

Delete and Backdelete by phrase
You can move the cursor to the previous phrase and next phrase (Alt+[, Alt+]), and highlight 
the next phrase (Alt+\);, but in NB.KBD you can't delete or backdelete by phrase. Here are 
key definitions (adapted from the NB3 keyboard file) that let you do it:
 ;   Backdelete phrase
 ##=yd,xd,df,pw,bx,s,e,b, , ,^,S,^,S,^,O,^,R,^,O,^,T,q2,cl,nw,df,rd
 ;  Delete Phrase
 ##=yd,xd,df,bx,s,e, , ,^,S,^,S,^,O,^,R,^,O,^,T,q2,df,rd

Zoom by 1%
NB zooms window size in 5% increments. To zoom in and out by 1% increments, you could 
add these two keys, and perhaps a third to return to 100% view (these are from J-P Takala):
 ##=bx,z,o,o,m, ,-,1,q2
 ##=bx,z,o,o,m, ,+,1,q2
 ##=bx,z,o,o,m, ,1,0,0,q2

Abandon a file without having to confirm
To abandon a file without getting a message box asking if you want to save it:
 ##=bx,a,b,q2

Remove hard page breaks
To remove all hard page breaks from the cursor position to end of file (and be told, on the 
command line, that it’s been done):

##=bx,c,i, ,/,E,P,G,F,/,/,q2,bc,P,G, ,c,o,d,e,s, ,r,e,m,o,v,e,d, ,f,r,o,m, ,h,e,r,e, ,t,o, ,e,n,d, 
,o,f, ,f,i,l,e

(‘E’ and ‘F’ are input as described on p 22 above.)

Change preceding punctuation mark
These definitions are useful if you do a lot of rewriting.

To remove the punctuation mark at end of the word preceding the current word (e.g., change 
‘keys, and’ to ‘keys and’—useful if you do a lot of rewriting):

##=ql,qr,bc,s,e,b, , ,wa,ws,xc,qr,rc,qr,ch
To put a semicolon, colon, question mark or comma at end of the word preceding the current 
word (e.g., changes ‘keys, and’ to ‘keys: and’). Can be adapted to any punctuation mark.
NB: Function ‘co’ must be used instead of an actual comma, since keyboard tables use com-
mas  as separators.

semicolon:  ##=ql,qr,bc,s,e,b, , ,wa,ws,xc,qr,rc,;,qr,ch
colon:  ##=ql,qr,bc,s,e,b, , ,wa,ws,xc,qr,rc,:,qr,ch
question mark: ##=ql,qr,bc,s,e,b, , ,wa,ws,xc,qr,rc,?,qr,ch
comma:  ##=ql,qr,bc,s,e,b, , ,wa,ws,xc,qr,rc,co,qr,ch

CPG Chapter 2: Keyboard Customization                                                                25



Copy highlighted material to adjacent window; undefine in this one
##=as,yd,cp,as,gt,xd

This leaves the cursor in the first window. To go to the adjacent window after the copy, add 
‘as’ (preceded of course by a comma) to the end of the definition.

Place marker like NB4’s
NB4’s place marker was pretty good. NB for Windows has bookmarks, which don’t survive 
from session to session, and annotations, which do. There are two problems with annotations.

 —They can’t be empty. If you press Ctrl+Shift+Alt F1, you have to enter at least one 
character  before the dialog will close.
—You can’t search for and delete them in Page Layout View.

But if you put the following on 3 keys, you have a quick, easily searchable, permanent (till 
you delete it) marker. (The marker is on uppercase 2 in the Insert, Special Characters, Text 
Characters menu).

##=no,•                                  [the NB4 marker character]
##=bx,s,e, ,\,•,\,q2                 [search forward in file for marker]
##=bx,s,e,b, ,\,•,\,q2             [search backward in file for marker]

Lists of Keyboard Functions

These topical and alphabetical lists contain most of the two-character function mnemonics 
needed for keyboard customization. For a full list of  all the codes that it is possible to use in 
Nota Bene, see Chapter 8. 

26                                                                CPG Chapter 2: Keyboard Customization



TOPICAL LIST OF FUNCTIONS 

    Name                      Description 
 
ASCII NUMBERS 

CPG Chapter 2: Keyboard Customization                                                                27

r1 Record ASCII 1-
r9 Record ASCII 9
r0 Record ASCII 0

input ASCII digit 1- input ASCII digit 9

input ASCII 0 

CELLULAR TABLES

ec End Cell
ed Entry Define
mc Mark Column
tl Table Left
tr Table Right

move cursor to end of current cell
select current row of cells
mark column - select cell at cursor location  in a table
move cursor to previous cell
move cursor to next cell 

COMMAND LINE 

bc Blank Command
cc Change Cursor
xc eXecute Command
ch Clear Header
gh Go to Header
gt Go to Text
s- Show last command
bx Blind eXecute
q2 execute command  

move to beginning of command line
move between command line & text
execute command on command line
clear command line w/o moving cursor
move cursor to command line
move cursor to text area
displays last command on command line
execute command without putting it on command line
finish command started with BX 

COPYING & MOVING DEFINED BLOCK

cp CoPy define
mv MoVe define
un paste from
    clipboard
 

copy block to cursor position
move selected block to cursor position
paste copy from clipboard. (In Page layout View, in
   NB Lingua,  an invalid «XAEnglish» code is
   inserted as well as the text.)

COUNTERS

 c1-c9 Counter 1 -
       Counter 9

c0 Counter 0

insert counter («C1») in text
insert counter («C9») in text
insert counter («C0») in text

  CURSOR MOVEMENT IN TEXT AREA 

cl Cursor Left
cr Cursor Right
pc Previous Char.
nc Next Character

move left one character
move right one character
same as cl
same as cr 



ql cursor left
qr cursor right
cu Cursor Up
cd Cursor Down
ll Linear Left
lr Linear Right
lu Linear Up
ld Linear Down

pw Previous Word
nw Next Word
pt Previous Tab
nt Next Tab
el Express Left
xm eXpress Middle
er Express Right
lb Line Beginning
le Line End
pl Previous Line
nl Next Line

ps Previous Sentence
ns Next Sentence

pp Previous  Paragraph
np Next Paragraph

hm HoMe (of screen)
bs Bottom of Screen

mu Move Up
md Move Down

pu Page (screen) Up
pd Page (screen) Down

vu scroll Up
vd scroll Down

pf Previous Form
nf Next Form

tf Top of File
bf Bottom of File

28                                                                CPG Chapter 2: Keyboard Customization

move cursor left one character (to next line if at end)
move cursor right one character (to next line if at end)
move up one line
move down one line
move to left (inc. dead space)
move to right (inc. dead space)
move up one line (stay in column)
move down one line (stay in col.)

move to beginning of previous word
move to beginning of next word
move to prev. tab column on line
move to next tab column on line
to beg. of line, then straight up
to middle character on line
to end of line, beg. of next, end
move to beg. of current line
move to end of current line
move to beg. of previous line
move to beg. of next line

move to beg. of previous sentence
move to beg. of next sentence

 move to beg. of previous paragraph
 move to beg. of next paragraph

move to first character on screen
move to last character on screen

scroll up one line
scroll down one line

scroll up one screen
scroll down one screen

scroll up one screen
scroll down one screen

move to top of previous page
move to top of next page

move to beginning of file
move to end of file



DEAD ACCENTS 

CPG Chapter 2: Keyboard Customization                                                                29

 s1 acute accent
s2 grave accent
s3 umlaut
s4 circumflex
s5 ° accent
s6 tilde

insert temporary dead acute accent
insert temporary dead grave accent
insert temporary dead umlaut
insert temporary dead circumflex
insert temporary dead °
insert temporary dead tilde

DEFINING 

dc Define Column
df Define Free-form
dm Define Modify

dn Delete, No undelete
dw Define Word
dl Define Line
ds Define Sentence
dp Define Paragraph
dz Define end
nb uNbreakable Block
yd “Yank” Define
xd “X” Define
db Define Begin
de Define End
dd Delete block/char

dz Define end

begin column define
begin/set free-form defining
extend (or shrink) a block of selected text  to cursor
       position  (only with persistent selection)
delete selected text without saving it on delete stack
define current word
define current line
define current sentence
define current paragraph
end selecting a block if selection is in progress.
designate selected block of text as unbreakable
clear define
clear define, don’t close window
move cursor to start of defined block
move cursor to end of defined block
end selecting block and delete block. If  no selection,
    delete character
end selecting a block if selection is in progress.

DELETING 

 rd Rub out Defined
    block
nu delete, No Undelete
nu delete, No Undelete
bd Backspace Delete
rc Rub out Character
rw Rub out Word
re Rub out to line End
rl Rub out Line
rs Rub out Sentence
rp Rub out Paragraph
ud Un-Delete
up Un-Pad spaces

rb Rub out word
   Before

delete defined block

delete selected text, don’t save for possible later undelete.
delete selected text, don’t save for possible later undelete.
delete previous character
delete current character
delete current word
delete to end of current line
delete entire current line
delete current sentence
delete current paragraph
restore text from undelete buffer
delete space(s) to left of cursor  (up to next
     character)
delete the word before the word the cursor is on 



DOCUMENT DISPLAY MODES

30                                                                CPG Chapter 2: Keyboard Customization

nm No Markers
ef Edit Footnote/ code
xp eXPanded mode
wg normal mode
sp Show Pg-Ln
tp Toggle Pg-Ln
cm Change Mode
mk MarKers

wz Page Layout View 

conceal  markers
open note or delta cursor is on
change to Show Codes View
change to old Page-Line mode
turn on Page-Line counter
toggle Page Layout—old Page-Line  mode
toggle old Page-Line mode—Show Codes View
toggle display of format markers and line ending
     markers.
change to Page Layout View
 

MATH

dt Dump Total
mt.* Multiply
mt,/ divide
sm SuM
su SUbtract

dump total at cursor in text area
multiply (*) accumulated sum by selected number
divide (/) accumulated sum by selected number
add number (or defined numbers)
subtract number (or def. numbers)

 MENU/HELP/SYSTEM 

 h@ open NB Help 

PHRASE LIBRARIES

 ad Append Def. to key
sv SaVe def. to key
@A  @Z
@0  @9
&A  &Z
&0  &9
sg x  get Save/Get
  or #   

append define to end of phrase key
save defined block on phrase key
insert phrase from alphabet key
insert phrase from numeric key
insert “ampersand phrase”
insert “ampersand phrase”
insert text or run program from phrase key x or # 

PRINT MODES

 m0 Mode 0
m1 Mode 1
m2 Mode 2
m3 Mode 3
m5 Mode 5
m7 Mode 7
m8 Mode 8
m9 Mode 9
mx Mode conteXt

mz Mode bold italic

select context mode
select normal mode
select bold mode
select underline mode
select bold-underline mode
select superscrlpt mode
select subscript mode
select italic mode
type in mode at cursor - same as M0, but does not
      get inserted  in programs
type text in, or make selected text, bold italic



SEARCHING 

CPG Chapter 2: Keyboard Customization                                                                31

fd File Difference
fm File Match
wa WildAlphanumeric
wl Wild Letter
wn Wild Number
ws Wild Separator
ww Wild “Within”
wx Wild X
nn x generic wild card

find next difference in two files
find next similarity in two files
any letter or number
any letter
any number
any separator
any intervening string (up to 80 characters long)
    any character (including space)
generic Wild Card - the next character  is the
    wild card. [see Chapter 8]  

SYSTEM & MISCELLANEOUS

bk BreaK
ex EXit Nota Bene
co COmma
ni No Interrupt
no No Operation
es EScape
fd File Difference
fm File Match
xn Transpose teXt
 1/2/3/4/5/6
sa Save
sl Save aLL
it Insert Tab
<< copyright/«

>> high line or »

nm No Markers
bl Balanced Left

br Balanced Right

fc Force Centre
fl Flush Left
fr Flush Right
ff Force reFresh
dx Display X (off)
do Display On

stop command or user program
exit program
insert comma in key definition
suppress non-Nota Bene effect
precedes word assigned to key
release selected text or close command window
find next difference in two files
find next similarity in two files
transpose text  [see Chapter 8]

save file
save all open files in all windows.
insert a tab on command line or in text
enter ® in program or opening command brackets
      on command line
enter ¯ in program or closing command brackets
      on command line markers
hide format markers and line ending markers
jump to left edge of current balanced pair of
   command brackets
jump to right edge of current balanced pair of
   command brackets
insert centre text command
insert flush left command
insert flush right command
refresh screen
freeze display (pair with do)
turn display on (pair with dx, follow with ff) 

The dx and do functions must be used in pairs in key assignments or in programs.  If you turn 
off the display by using dx without later turning it back on by using do in the same key 
assignment, it will appear as if the computer has locked up.  If you mistakenly create such an 
assignment or program, you can restore the screen by pressing F9, typing func do (thouqh you 
won’t be able to see it being typed), and then pressing F10.  



TOGGLING KEYBOARD MODES 

32                                                                CPG Chapter 2: Keyboard Customization

ci Clear Insert
mi toggle Insert

si Set Insert
ti Toggle Insert
tw Toggle Word

tg ToGgle views

ts Toggle program
 recording mode
ss turn on recording
   mode

switch to Overstrike mode (from Insert)
switch from Overstrike to Insert mode until
   a cursor key is pressed
switch to Insert mode (from  Overstrike)
toggle between insert and overstrike  modes
toggle between Insert mode and Word
   Overstrike mode
toggle between Page Layout and the view
   previously displayed
toggle program recording mode

turn on Program Recording Mode 

WINDOWS

as Alternate Screen
nx NeXt window
cb Cycle Backwards

#1  #9
ef Edit Footnote
mw Microsoft Windows
    functions

toggle between two windows
cycle through windows
move through windows in the reverse order  to that
     in which they were opened
move cursor to window #
open or close  window (e.g., footnote window)
      see Alphabetical List below]

SPELLING CHECKER/THESAURUS 

ac Auto-Correct
az Auto-Replace
fs Fix Spelling
ir Insert  Replacement
so Spell One
sy SYnonyms

toggle Auto-Correct mode
toggle Auto-Replace mode
go to last questioned word
insert replacement word in personal  dictionary
check spelling of a word
display list of synonyms 

REDLINING/BLUE-PENCILLING 

 ro Redlining On toggle Redlining/Blue-Penciling  



ALPHABETICAL LIST OF FUNCTIONS

CPG Chapter 2: Keyboard Customization                                                                33

Name

<< copyright or «
>> high line or »
#1 — #9
@0—@9
@A —@Z
&A—&Z
&0—&9

ac Auto-Check
ad Append Def. to key
ar Auto-Replace

as Alternate Screen
az

bc Blank Command
bd Backspace Delete
bf Bottom of File
bk BreaK
bl Balanced Left

br Balanced Right

bs Bottom of Screen
bx Blind eXecute

c1-c0 Counters 1-9 & 0
cb Cycle Backwards

cc Change Cursor
cd Cursor Down
ch Clear Header
ci Clear Insert
cl Cursor Left
cm Change Mode
co COmma

Description

Enters ® in program or « on command line
Enters  ¯ in program or » on command line
move cursor to window #
insert phrase from numeric key
insert phrase from alphabet key
insert “ampersand phrase”
insert “ampersand phrase”

turn Auto-check on and off.
append define to end of phrase key
execute Expand Abbreviation (NB: toggle Expand
    Abbreviation is AZ)
toggle between two windows
Toggle Auto-Replace on and off.

move to beg. of command line
delete previous character
move to end of file
stop command or user program
Jump to left edge of current balanced pair of command
    brackets
Jump to right edge of current balanced pair of command
    brackets
move to last character on screen
execute command without putting it on command line

insert counter («C#») in text
Move through windows in the reverse order to that in
    which they were opened.
move between command line & text
move down one line
clear command line w/o moving cursor
Switch to Overstrike mode (from Insert)
move left one character
toggle old draft mode - Show Codes View
insert comma in key definition



cp CoPy define
cr Cursor Right
cu Cursor Up

db Define Begin
dc Define Column
dd Delete block/char

de Define End
df Define Free-form
dl Define Line
dm Define Modify

dn Delete, No undelete
do Display On
dp Define Paragraph

ds Define Sentence
dt Dump Total
dw Define Word
dx Display X (off)
dz Define end

ec End Cell
ed Entry Define
ef Edit Footnote/code
el Express Left
er Express Right
es EScape
ex EXit Nota Bene

fc Force Centre
fd File Difference
ff Force reFresh
fl Flush Left
fm File Match
fr Flush Right

gh Go to Header
gt Go to Text

h@ Help
hm HoMe (of screen)

34                                                                CPG Chapter 2: Keyboard Customization

copy block to cursor position
move right one character
move up one line

move cursor to start of defined block
begin column define
end selecting block and delete block. If no selection,
    delete character
move cursor to end of defined block
begin/set free-form defining
define current line
Extend (or shrink) a block of selected text to cursor
   position. (Only with persistent selection on)
Delete selected text without saving it on the delete stack
turn display on (pair with dx)
define current paragraph

define current sentence
dump total at cursor in text area
define current word
freeze display (pair with do)
end selecting a block if selection is in progress.

move cursor to end of current cell
define current row of cells
open or close  window (e.g., footnote window)
to beg. of line, then straight up
to end of line, beg. of next, end
release selected text or close cmd window
exit program

centre text
find next difference in two files
refresh screen
insert flush left command
find next similarity in two files
insert flush right command

move cursor to command line
move cursor to text area

open NB Help
move to first character on screen



ir Insert Replacement
it Insert Tab

lb Line Beginning
ld Linear Down
le Line End
ll Linear Left
lr Linear Right
lu Linear Up

m0 Mode 0
m1 Mode 1
m2 Mode 2
m3 Mode 3
m5 Mode 5
m7 Mode 7
m8 Mode 8
m9 Mode 9
mc Mark Column
md Move Down
mi toggle Insert

mk MarKers

mu Move Up
mv MoVe define
mw Microsoft Windows
 functions
   ac 
   ah 
   ar 
   av 
   cb 
   cl 
   cp 
   cu 
   hh 
   hi 
   mn 
   pa 
   mv 

   mw 
   mx 
   pa 

CPG Chapter 2: Keyboard Customization                                                                35

Open auto-check/auto-replace pair dialog
insert a tab on command line or in text

move to beg. of current line
move down one line (stay in col.)
move to end of current line
move to left (inc. dead space)
move to right (inc. dead space)
move up one line (stay in column)

type text in context mode
type text in normal mode
type text in bold mode
type text in underline mode
type text in bold-underline mode
type text in superscrlpt mode
type text in subscript mode
type text in italic mode
select cell at cursor location in a table
scroll down one line
switch from Overstrike to Insert mode until a cursor key
     is pressed.
toggle display of format markers and line ending
     markers.
scroll text and cursor up one line
move selected block to cursor position
Microsoft Windows functions (do ‘func mw’, then enter
      2-letter code):
Cascade all text windows
Split all text windows horizontally
Tile all text windows
Split all text windows vertically
Display contents of Windows Clipboard
Close text window
Copy selected text to Windows Clipboard
Cut to Windows Clipboard
Display help on using Help files (Windows Help)
Display Help Index (Nota Bene Help)
Minimize NB screen
Past text from Windows Clipboard
Display 4-headed arrow to move NB screen (minimizes
    NB at top lhs of screen; dragging enlarges it)
Move window
Maximize NB screen
Paste text from Windows Clipboard



   pl
   pr
   ps
   qu
   rm
   rs
   rw
   sf
   sl
   sr
   sw
   sz
   wf
   wi
mx Mode conteXt

mz Mode bold italic

nb uNbreakable Block
nc Next Character
nf Next Form
ni No Interrupt
nl Next Line
nm No Markers

nn x  generic wild card
no No Operation
np Next Paragraph
ns Next Sentence
nt Next Tab
nu delete, No Undelete

nw Next Word
nx NeXt window

pc Previous Char.
pd Page (screen) Dn
pf Previous Form
pl Previous Line
pp Previous Paragraph
ps Previous Sentence
pt Previous Tab
pu Page (screen) Up
pw Previous Word

36                                                                CPG Chapter 2: Keyboard Customization

Paste link (doesn’t seem to do anything)
Display information about Windows printer driver
Paste special
Quit
Restore text window to maximum size
Restore NB screen to previous non-max|min size
Restore file
Repaint the screen (doesn’t seem to do anything)
Scroll left
Scroll right
Size document window
Display 4-headed arrow to move text window
Make current text window full screen
Minimize text window
type in mode at cursor - same as M0, but does not get
     inserted  in programs.
type text in bold italic, or make selected text bold italic

designate selected block of text as unbreakable
cursor right (same as cr)
move to top of next page
suppress non-Nota Bene effect
move to beg. of next line
no markers - hide format markers and line ending
     markers
generic wild card (see Chapter 8)
precedes word assigned to key
move to beg. of next paragraph
move to beg. of next sentence
move to next tab column on line
delete selected text, without saving it for possible later
     undelete.
move to beginning of next word
cycle through windows

same as cl
scroll down one screen
move to top of previous page
move to beg. of previous line
move to beg. of previous paragraph
move to beg. of previous sentence
move to prev. tab column on line
scroll up one screen
move to beginning of previous word



q2 execute cmd
ql cursor Left

qr cursor Right

r0-r9 Record ASCII 0-9
rb Rub word Before
rc Rub out Character
rd Rub out Defined 
   block
re Rub out to line End
rl Rub out Line
ro Redlining On
rp Rub out Paragraph
rs Rub out Sentence
rw Rub out Word

s- Show last cmd
s1 acute accent
s2 grave accent
s3 umlaut
s4 circumflex
s5 ° accent
s6 tilde
sa Save
sg x  get Save/Get
   or #
si Set Insert
sl Save aLL
sm SuM
so Spell One
sp Show Pg-Ln
ss turn on recording
  mode
su SUbtract
sv SaVe def. to key
sy SYnonyms

tf Top of File
tg ToGgle views

ti Toggle Insert
tl Table Left

CPG Chapter 2: Keyboard Customization                                                                37

finish command started with BX
move cursor left one space (to previous line if at
   beginning)
move cursor right one character (to next line if at end)

input ASCII digits
delete word before word cursor is on.
delete current character
delete defined block

delete to end of current line
delete entire current line
toggle Redlining/Blue-Penciling
delete current paragraph
delete current sentence
delete current word

displays last command on command line
insert temporary dead acute accent
insert temporary dead grave accent
insert temporary dead umlaut
insert temporary dead
insert temporary dead °
insert temporary dead tilde
save file
insert text or run program from phrase key x or #

switch to Insert mode (from Overstrike)
save all open files in all windows.
add number (or defined numbers)
check spelling of a word
Switch to old Page-Line view
turn on Program Recording Mode

subtract number (or def. numbers)
save defined block on phrase key
display list of synonyms

move to beginning of file
toggle between Page Layout and view  previously
   displayed
toggle insert -  Replace modes
move cursor to previous cell



tp Toggle Page layout-
tr Table Right
ts Toggle program
  mode
tw Toggle Word

ud Un-Delete
un paste from clipboard

up Un-Pad spaces

vd scroll Down
vu scroll Up

wa Wild Alphanumeric
wg normal mode
wl Wild Letter
wn Wild Number
ws Wild Separator
ww Wild “Within”
wx Wild X
wz page layout view

xc eXecute Command
xd “X” Define
xm Xpress Middle
xn  Transpose teXt
1/2/3/ 4/5/6
xp eXPanded mode

yd “Yank” Define

38                                                                CPG Chapter 2: Keyboard Customization

toggle Page Layout-old draft mode
move cursor to next cell
toggle program recording mode

switch between Insert mode and Word Overstrike mode.

restore last text deleted
Paste copy from clipboard. (In  NB Lingua, in Page
    layout View,an «XAEnglish» code is inserted as
    well as the text.)
delete space(s) to left of cursor

scroll down one screen
scroll up one screen

any letter or number
change to old draft mode
any letter
any number
any separator
any intervening string up to 80 chars.
any character (including space)
change to Page Layout View

execute command on command line
clear (don’t delete) define
to middle character on line
transpose text (see Chapter 8)

go to Show Codes View

clear define, don’t delete or close window



Programming: Introduction

In addition to Nota Bene’s many editing and formatting commands, a versatile programming 
language (called XPL) is available for enhancing or modifying the program according to your 
needs.  It is likely that many users are unaware of the existence of this feature of Nota Bene; 
and that others, after a brief glance at this chapter, will think that it all looks very forbidding, 
and conclude that it is not for them.  That is a pity, because learning the programming lan-
guage is quite like learning a new foreign language, with the advantage that its vocabulary is 
far smaller; furthermore its rules of syntax are fewer, and do not bring with them all the 
exceptions that have to be memorised when learning a new foreign language.  It is also 
unfortunate that books introducing beginners to a computer language often start off showing 
what you can do in the language by presenting you with specimen programs that will write 
for you on the screen something as useful as “Hello! My name is .....” ─ on a level with the 
“Où est la plume de ma tante?” of elementary French.  That is not necessary, and will be 
avoided here.  Instead it will be shown that even rudimentary programs can save you time or 
trouble in performing tasks in Nota Bene; and that from there you can gradually move on to 
more sophisticated operations.

It should be mentioned here that the programming language used for writing programs in 
Nota Bene is identical with much of the programming language used by Nota Bene itself, so 
that a beginner in Nota Bene programming has more familiarity with the language than 
he/she supposes.  If you have not been talking XPL all your life, you have been nearer than 
you may think.

The programs you create with Nota Bene are regular files composed of three different kinds 
of instructions, used individually or in combination:

  i. normal text
  ii. program functions (similar to the functions in
   the keyboard table─see “Keyboard Customization”
   chapter)
  iii. special programming codes, or “calls”

Text A program that contains the first of these is the simplest kind.  Text is inserted from a 
program file, rather than by being entered from the keyboard.  This can be useful for inserting 
boilerplate text, and does not keep any memory tied up when not being used, as does storing 
text on phrase keys or in an abbreviation dictionary.

Unlike phrase libraries and keyboard assignments, both of which insert text instantly, a pro-
gram containing text is “played back” sequentially ─ characters appear one after another, as if 
being typed by a fast typist.

Program Functions Programs that contain “program functions” are a little more compli-
cated.  Like keyboard assignments, such programs can perform editing actions--they are not 
limited to inserting text or copying existing format codes.  Program functions are embedded 
in ordinary files on disk.  Unlike programs assigned to keys in the keyboard table, which 
must be loaded into memory, programs recorded as program files do not need to be loaded 
into memory until you want to use them. Also, storing routine editing functions in programs 

CPG Chapter 3: Introduction to XPL Programming and Functions                      39



enables you to “run” a program as required without having to create and load different key-
boards for particular applications.  For further details see Program Functions below.
Program “Calls” The most complex, versatile, and powerful programs, however, contain a 
series of programming operations that will be referred to as “program calls”.  These program 
calls allow you to compare characters and numbers, check for error conditions, or perform 
conditional actions, among other things.  Full use of this programming language enables you 
to get Nota Bene to do many things that it cannot already do.  For further details see Pro-
gram Calls below, and the “Program Calls” chapter.

Program File Commands

The following commands are used for creating, editing, and implementing programs:

Creating New Program To create a new program file:
   F9 ne x:filename.run F10
                                                      │
                                                      └──recommended extension

Choosing a standard extension like .RUN for your program files makes it easier to get a 
directory that lists only program files, and helps to avoid treating them like regular files. But 
you can call programs anything you like. If you want to be able to run them from the com-
mand line, use no more than 8 characters for the file name, and no more than 3 for the exten-
sion.

Calling Program to Screen To call an existing program file to the screen so you can check 
its content or edit it:
   F9 ca x:filename.run F10

Running Program  To implement (or “run”) a program:
   F9 run x:filename.run F10

This command causes the program to be executed.  Depending on the content of the program 
file, it will insert text either on the command line or in the text area, and/or it will execute 
program functions, and/or it will cause program calls to be evaluated and implemented.

If no filename is specified, the last program that was run will be rerun.

If the program file has already been loaded into memory (see next section), you do not 
need to specify the drive (and/or path) when running it.

If the program file has been loaded onto a phrase key, you can implement the program 
just by using that key (see next section).

 ──────────────────────────────────────────────────── 
Normally, program files are read from disk each time they are run.  If you want faster 
response, you can load the program file(s) into memory, as explained in the next section. 
[Probably superfluous on modern computers, and with Win XP.]

40                     CPG Chapter 3: Introduction to XPL Programming and Functions



Loading Programs into Memory

Loading on Phrase Key A program can be loaded on an Alt phrase key:
                                                       ┌──A to Z, 1 to 9
                                                       │
                      F9 ldpm x:filename.run,x F10
substituting for ‘x’ the letter or digit of the phrase key.

The program can then be implemented at any time by holding Alt down and pressing the 
alphanumeric key.

Remember not to assign a different phrase to the same key unless you want to over-
write the program in memory.

Even when a program is assigned to a phrase key, text is entered into the file sequen-
tially, as explained earlier.

You can use the salib command to create a phrase library that includes programs 
assigned to phrase keys.  Thereafter, ldlib will reload the programs even if the original 
program files are not on the disk.

Loading on “Ampersand Phrase” If you need to load more programs, use amper-
sand phrases:
                                                 ┌──ampersand
                                                 │┌A to Z, 0 to 9
           F9 ldpm x:filename.run,&x F10

The program can then be implemented
 (i)  by using the function (func) command with the corresponding phrase: func &x; 
or
 (ii) by mapping the ampersand phrase to a key in your keyboard file with:
         NN=&x      ;where NN is the number of the key in the table.

Programs loaded on ampersand phrases, unlike those loaded on Alt phrase keys, cannot 
be saved to disk.  They are saved only to memory, and are lost when you quit Nota 
Bene.

Loading in General Memory A program can be loaded into general memory:
   F9 ldpm x:filename.run F10
The program can then be implemented at any time by using the run command with the 
program’s filename.  Nota Bene first looks in general memory for the indicated pro-
gram; if the program file is not there, it checks the default disk.

Loading via NBSTART.INT NBSTART.INT is a program file that is run every time 
you start Nota Bene. In vanilla NB it is empty. You can add commands to it, e.g.:

                      BX run x:filename.run Q2
                      BX load x:filename.run,a Q2   [See p  165 for BX and Q2.]

CPG Chapter 3: Introduction to XPL Programming and Functions                      41



Other Ways of Running Programs For users with sufficient experience of Nota 
Bene there are other ways of loading and of running programs, which will be only men-
tioned here.  They can be saved on extended phrases and then run with a single «pv#» 
command; or they can be added to the bottom of the XYWWWEB.U2 file, if you have 
it loaded - see http://www.serve.com/xywwweb/, and p 163.

Removing Program(s)  If you want to free up memory by clearing a program that is 
no longer needed, use the remove command:
   remove x for program on Alt phrase (A-Z, 1-9)
   remove filename for specific program only

Normal Text in Program Files

Text is typed into a program file just as it is in an ordinary file.  You can use the normal 
editing keys or commands to move the cursor, delete, or otherwise edit the text.  When 
any of the available editing operations are used (such as moving the cursor to the begin-
ning of the line), the operation is implemented as usual.

Although such text can also be typed while the “program recording mode” is on (as 
described in a later section), it is not necessary to have that mode on for typing text.  In 
fact, having the recording mode on makes it more difficult to edit the text, because 
pressing an editing key embeds a program function into the document rather than 
actually implementing the editing operation.  See Program-Recording Mode below.

If a file is to consist solely of text, there is, in fact, little point in making it a program 
file.  It can be a regular text, e.g., boilerplate, file, which can be inserted into the body 
of another file by use of the merge command.  But, if you have a file that already is a 
program file, and wish to add text to it at a certain place, you can do so, by using ca to 
call the file and then entering the new text in the desired place.

Program Functions

“Program functions” and the “keyboard functions” used in keyboard tables are the same 
things used in different ways.  Keyboard functions are two-character codes, and program 
functions are three-character codes (although they look to be two-character followed by a 
space); and all instruct Nota Bene to perform a particular editing or other operation.

Keyboard Functions

As explained in the “Keyboard Customization” chapter, a keyboard function is a two-letter 
code that is assigned (by itself or in combination with other keyboard functions or characters) 
to a particular key in the keyboard table to determine what that key does.  When you press the 
key, the keyboard function is implemented.

Keyboard functions are typed as ordinary text in the keyboard table, which must then 
be stored and loaded into memory before the function can actually be used.  For exam-
ple, the F9 key is defined in the keyboard table as

 68=xc

42                     CPG Chapter 3: Introduction to XPL Programming and Functions

http://www.serve.com/xywwweb/


so that, when you press F10, the  ‘xc’functions is implemented: the command on the 
Command line is executed.
Alternatively, keyboard functions can be implemented from the command line with the 
func command.  For example, F9 func dl F10 will define the current line.

Keyboard functions are generally lowercased in the keyboard table; but the case makes 
no difference.  In this manual, they are always shown in lowercase (and in bold [as 
“xc”] in explanatory text).

Program Functions

A program function is a function that is entered into a program file to be performed as part of 
the program.  Program functions implement exactly the same operations as the corresponding 
keyboard functions, but do so automatically as part of a program rather than when a key is 
pressed.  If a program contains the program function BC , the cursor is automatically moved 
to the command line, and the command line is automatically blanked.

If the program-recording mode is on (see next section), program functions can be 
entered into the file by pressing the key to which they are assigned.  For example, strik-
ing the key F9, the function of which is to move the cursor to the command line and 
clear anything that is there, will not actually perform that function, but will instead 
enter the codes &X BC  into the file.  If program-recording mode is not in effect when 
F9 is struck, it will not enter the codes into the file; instead it will actually execute its 
function of clearing the command line.

A program function consists of the same two letters as the corresponding keyboard 
function, followed by what looks like an ordinary space but is really a special null code.  
These three characters are in fact a single unit: if you put the cursor on the first charac-
ter, say the B of BC , and then strike the cursor-right key once, the cursor will jump 
three places to the right.  The program function is also defined and copied or moved as 
a single unit.

Program functions always appear uppercased. In Show Codes View they appear as 
white letters in a black rectangle. They cannot be typed as actual characters.

In this manual, when a program function is referred to by itself in explanatory text, the 
null character is not normally shown because an extra space looks unnatural in the text.

Searching for program functions: To search for program functions, strike the pfunc 
key (Ctrl+; or Ctrl+Keypad 5) twice, then type the two  letters of code you're looking 
for and strike F10.

Recording Program Functions: Because program functions are not ordinary text, 
they cannot be directly typed into a program file.  Instead, they must be embedded, 
either
(i) in program-recording mode, by pressing the key to which they are assigned 
(described below).
(ii) By using the pfunc command, which converts a mnemonic into its corresponding 
function (see below).

CPG Chapter 3: Introduction to XPL Programming and Functions                      43



Program-Recording Mode This mode operates differently in Nota Bene from the 
the macro-recording modes of  other word processing programs.  In those programs, 
when the mode is on, entering keystrokes does two things:
   (i) it makes the keystrokes function in their ordinary way, e.g., to delete or to 
backdelete a character, to enter a character in uppercase rather than lowercase, to 
execute a command, etc.; at the same time
   (ii) it also records the character’s editing function, so that, when a string of such 
functions has been recorded and saved, what is often called a macro has been created, 
which can be used on subsequent occasions to perform the operation that was on this 
occasion performed in (i) by the successive keystroke entries.
If Nota Bene were of this kind, striking in succession (with no spaces between them) 
the keys F9 d i r <space> * . d o c F10 would
(i)  bring up a directory of all filenames in the current subdirectory that have the exten-
sion ‘doc’;
(ii) record the command
  BC dir *.docXC (which could be used to do that job in future)

Nota Bene’s recording mode is simply and solely a recording mode.  It does not perform 
function (i), just function (ii).  This makes the editing and correcting of recorded strings much 
easier.  Because Nota Bene records the keystrokes you make, but does not simultaneously 
execute them, you can correct your typing errors there and then; you do not have to go back to 
square one and start all over again.  But you must first toggle off the Recording mode; other-
wise, instead of, say, deleting unwanted characters, you will be embedding unwanted ‘delete’ 
commands into the program you are trying to record.

Program-recording mode records your keystrokes in the file rather than using them to edit the 
program file.  This makes it very easy to write programs that incorporate editing or other 
operations equivalent to those already assigned to keys: while writing the program, you can 
continue thinking in the way you do when you use Nota Bene itself.  Whenever you want to 
record a particular editing or other operation as part of the program, simply turn on the pro-
gram recording mode.  Then, when you want to return to moving around in or editing the pro-
gram file itself, turn off the program-recording mode.

Every time you turn off Recording Mode, a NI code is entered into the program at the cursor 
position. You can safely delete it - just press backdelete once.

 Ctrl Alt; [semicolon] toggles program-recording mode on/off
So do Ctrl Alt+keypad 5, Ctrl+Shift+Alt+;, and  Ctrl+Shift+Alt++keypad 5.
If you decide upon one, you can delete the others from your keyboard table, leaving 3 keys 
free for user customizing.

Editing Remember that to perform operations,─cursor movement, deletion, copying, 
etc.,─upon a program file rather than recording them as components of the file, you 
need to turn off the program-recording mode. Otherwise, for instance: if you make a 
mistake when recording and want to delete the previous character, striking Bkdel will 
insert the string on that key rather than deleting the character.

44                     CPG Chapter 3: Introduction to XPL Programming and Functions



Inserted Material Whenever a key is pressed while the program-recording mode is 
on, everything assigned to that key in the currently loaded keyboard table is inserted 
into the file: a single function, a series of functions, individual characters, etc.

If you press a key to which a program has been assigned, the entire program will be 
embedded.

In any case, it is inadvisable to use Recording mode, because in Nota Bene 8 many keys 
which used to be defined as single functions are defined with strings that cannot be used in 
programs. E.g., Bkdel is defined as ‘[U &X BDU] ’. You can enter this into your program in 
program-recording mode, but it will not backdelete. You will need to use ‘Pfunc bd’, which 
will insert a BD code into the program. That will work.

PFUNC Command  The put-function (pfunc) command allows you to type the two-letter 
mnemonic for a function and have the actual function embedded in a file at the cursor posi-
tion:
                                      ┌─two-letter mnemonic (e.g., bc)
                     F9 pfunc xx F10

Example: Pressing F9 pfunc bc F10 embeds the function BC into a file.

Pfunc is on Ctrl+; and Ctrl+Keypad 5.

A more detailed discussion of the two methods of embedding function codes (Recording 
Mode and the PFUNC Command) can be found in the chapter on Writing XPL Programs.

Sample Program: Text & Program Functions

You can use Nota Bene’s programming language to automate your work even without learn-
ing the more sophisticated program calls.  Here are two simple examples:

(a) move screen up 10 lines

You may sometimes, when writing a file, find that you are always writing at the bottom of the 
screen, and would like to have the screen moved up by ten or a dozen lines, so that you can 
continue working, but now with the cursor starting in the middle of the screen.  You can 
achieve that by striking Ctrl- , say, 10 times.  But, if you put this program on a key, the job 
would be done much quicker:

 MU MU MU MU MU MU MU MU MU MU

You can create that program by
  (i) creating a file (with ne),
  (ii) toggling Recording mode on,
  (iii) striking Ctrl-  10 times,
  (iv) toggling Recording mode off, and
  (v) saving the file to disk.

CPG Chapter 3: Introduction to XPL Programming and Functions                      45



(b) copy from 1 window to adjacent one.

Suppose you have two documents open in adjacent windows and want to selectively copy 
paragraphs from one to the other.  Although you could do this with only a few keystrokes in 
any case, you would like to make the process simpler yet.  The following program would do 
the trick:
   DP AS BF CP AS XD
This sequence defines the current paragraph (DP), switches windows (AS), moves to the bot-
tom of the file (BF), copies the paragraph (CP), switches back to the first window (AS), and 
clears the define (XD).

If you want to add a dividing line between the old material in the receiving file and the new, 
add 

[CR] [i.e., strike the Enter key] BC ld -XC [CR] immediately after the BF program 
function:
 DP AS BF
BC ld -XC
CP AS XD

(You put a carriage return before and after the  leader in order to have it on a line by itself.)

You can have a message inserted on the command line to tell you what was done.  To do so, 
add the following program functions and text after the XD in the example above:
  BC Moved paragraph to other windowGT

The prompt (pr message) command can be used within programs to insert short messages on 
the status line rather than on the command line.  Examples are given in the sections later in 
this chapter.

You could save either of those programs on a phrase key by using ldpm x:filename,x.  (Use 
salib if you want to save the assignment permanently.)

Although the above key sequence could be assigned to a key in the keyboard table, you will 
probably find it more useful to create task-specific programs rather than constantly modifying 
the keyboard table.  This is especially the case if your programs become long.

Program Calls

 ──────────────────────────────────────────────────── 
Macros  Programs made possible by the use of Program Functions are simple, straightfor-
wrd, and limited in their scope.  They are what are normally called ‘macros’ in other soft-
ware.  A macro is a simple ‘batch’, i.e., a flow of uni-directional commands which get 
executed in sequence, one after the other.  They do not allow you to insert conditions or ‘if’s, 
and they do not allow the insertion of options.  It is like having a special key for a set of 
tedious operations; e.g., in the previous example: ‘define this paragraph, go to the file in the 
alternative screen, copy the paragraph, insert one blank line, return to the source file, cancel 
define’.

46                     CPG Chapter 3: Introduction to XPL Programming and Functions



Program Calls  The second, and far more powerful, versatile, and flexible type of XPL 
program is that which makes use of Program Calls as well as Program Functions. They  make 
it possible to implement a wide variety of special operations: updating calculations, perform-
ing automated searches, or customizing the program in many other different ways.

These operations can be performed because the program calls let you do such things as:

conduct string and numerical comparisons and execute other logical operations
perform conditional actions (based on results of these logical operations or the occur-
rence of error conditions)
designate and jump to specified labels
check the status of variables such as available memory or current format settings
read and evaluate characters typed from the keyboard

Most program calls are Embedded Commands (codes) that─unlike ordinary embedded com-
mands─take effect only in files “played back” with the run command. Embedded commands 
cannot be seen in Page Layout View. Therefore, a program should always be read (and writ-
ten) in Show Codes View, where the contents of the codes become visible. They are what 
make XPL stand apart from simple macro programs, however detailed those may be.  
Through program calls, XPL enables you to introduce conditions and options into program-
ming, much as you can in other high level languages.  It is done
(a) by storing information in memory buffers and later using it; and
(b) by (i) looping to repeat part of a program,
  (ii) jumping to a marker or label,
  (iii) branching in response to an ‘if’ clause,
  (iv) entering characters from the keyboard during the running of a program, and
  (v) exiting from part of a program, or from the whole of it.

The storing of information is done on phrase keys, either the regular phrase keys (A-Z, 0-9) 
or extended phrases (00-99, 000-099, 100-999 and 1000-1999).  In general it is best to avoid 
the regular phrase keys, which in any case you may have committed to other uses; anyway, 
there are far more extended phrases available than you are ever likely to need.
The difference between the 00-99 and 000-099 ranges on the one hand and the 100-999 range 
on the other concerns their survival in memory.  Anything stored to phrases in the 00-99 and 
000-099 ranges is deleted from memory as soon as you leave the particular program in which 
they are used; that has the advantage that you can use the same phrase-numbers over again in 
programs run later in a single working session.  Phrases stored in the 100-999 range remain in 
memory throughout a working session, or until they are replaced; that is useful for storing 
what are called sub-routines.

Although you have that enormous range of phrase-numbers to choose from, you need to 
exercise some care in doing it, in particular avoiding those that Nota Bene itself uses in its 
own programming.  Of the lower ranges 00 is reserved for a special function (storing all or 
part of the contents of the command line), but the remainder (01-99 and 000-099) can be used 
freely.  Of the upper range 100-999 are currently available, and are not used by Nota Bene;  
Nota Bene uses phrases in the 1300, 1700, and 1900 blocks, so you should avoid those.
(The range reserved for XYWWWEB.U2, if you use it, is 600-799.)

CPG Chapter 3: Introduction to XPL Programming and Functions                      47



va @#  You can always check for a given number by running on the command line the 
command va @# (substituting for # the phrase-number that you want to find out about); you 
must have a file on screen for this command to work.  If there is something stored in that 
memory location, it will be displayed on the screen (if you are in Page Layout View); you can 
delete the string and the code preceding it with a stroke of the <BkDel> key.  If all you get is 
a plain code, then there is nothing stored there, and the phrase-number can be used.

The discussion of  “program calls” in the remainder of this chapter contains information that 
will come more readily to those who have had some prior programming experience; but that 
is certainly not an absolute requirement.  Nota Bene does not provide support for users wish-
ing to implement programs using these extended features.  The following documentation, 
however, is intended to provide sufficient information for those wishing further to enhance 
the functionality of Nota Bene.  Examples are provided so that even those without program-
ming experience should be able to construct powerful and useful programs.  In general it pays 
to try working out the sequence and the flow of a program either in your head or on paper, 
before actually starting to write it.  More information about the use of program calls is given 
in Chapter 6 and Chapter 8.

 ──────────────────────────────────────────────────── 

Display Mode to Use  In Page Layout View, program calls are typed on the command line 
and, after execution are invisible. Creating and editing program files in Show Codes View is 
much easier.  That way the content of all of the program call codes can be seen (rather than 
just the one the cursor is on), making it much easier to find the proper label or follow the 
flow of the program.  All examples will be shown in this mode.
Show Codes View is also better because you can type the program calls in lowercase and 
control the case of any variables to make the program easier to read.  If executed in Normal 
Display mode, program calls and some variables would be automatically converted to upper-
case.

 ──────────────────────────────────────────────────── 
A program without breaks can be hard to read, because it appears to be a continuous stream 
of functions and program calls, with no punctuation to break them up, or to display the logi-
cal relationship between clauses.  You cannot break the lines of a program simply with para-
graph markers, because they will either execute the preceding string or be entered into the 
text.

Instead, use this sequence:
 ;*; [semi-colon star semi-colon]

Any line that begins with this sequence is a comment and will not be executed.
Any line that ends with this sequence will  be executed up to the beginning of the ;*; string.

So you can have a program broken up like this:
 ;*; Program [macro, really] to change to adjacent window
 ;*;
 DP AS BF CP AS XD ;*;
 ;*;

48                     CPG Chapter 3: Introduction to XPL Programming and Functions



 ;*; You can add a leader character after the BF
 ;*; written by X, on date Y.

Only the DP AS BF CP AS XD line will be executed. The BF on the penultimate line won’t 
be, because of the ;*; at the beginning of the line.

When writing a program it is a good idea to insert comments, explanations, and descriptions 
(where they can be put in without affecting the operation of the program), because a program 
can often seem unfamiliar even to its author after a long period of not scrutinising it. The ;*; 
sequence can used to insert such explanatory or descriptive text, either at the beginning of a 
program file, or in the course of it; they can also be inserted after the end of the program.

In Show Codes View, command brackets are typed with Ctrl+, or Ctrl+.,.  Remember that 
there must be a closing bracket for every opening bracket.  Many program calls contain 
nested elements, so make sure you correctly create the pairs.

 ──────────────────────────────────────────────────── 
Definitions of Terms Related to Program Calls

String   A string is alphanumeric text─a character, a word, or a phrase, including num-
bers, punctuation marks, separators, and box graphic characters.

Number   A number is simply that─a numeric value that can be manipulated by the 
ordinary four-function math operations.

Variable   A variable is a “place holder” that can be replaced with text or numbers that 
vary depending on the situation.

Expression   An expression is an operation performed on strings or numbers whereby 
the components are “analyzed” or “evaluated,” and the result saved for further use.

Operators   There are three different (though related) kinds of operations: simple math-
ematical operations, comparative operations (for string or numerical comparisons), and 
logical operations (to determine truth or falsity of expressions).

Subroutine   A subroutine is a section of a program that can be reused repeatedly or in 
different contexts within the program.

 ──────────────────────────────────────────────────── 
Pattern of Explanations The program calls and related elements are described in the fol-
lowing chapter.  For each, the program call itself is shown on the left, with the format (in 
Show Codes View) to the right.  Be sure to use commas and parentheses wherever they are 
indicated.  Notes and short examples are given after the descriptions.

CPG Chapter 3: Introduction to XPL Programming and Functions                      49



Programming: Program Calls

Saving to a Phrase

There are three different commands for saving information to phrases, sv, sx, and su.  Each 
performs a different function from the others, as will be described in the next three sections.

Save Variable  ─────────────────────────────────────────── 

sv   «sv#,text or number to be saved»

saves a string of characters or a number (treated as a string of digits) to a regular phrase (a-z, 
0-9), or to “extended” phrases [01-99, 000-799] provided within programs for later use.  The 
string is saved exactly as it is, without any interpretation or evaluation.  That means that the 
string is saved simply as text; if, for example, there are numbers in the string, they are saved 
as numerical characters.  Once a string has been saved to a phrase, the pv command (see Put 
Variable below) can be used to insert it─again just as it is─at the cursor’s position, as if it 
had been a defined block being copied to a new location.

Note that 0;*; Program reports ASCII value of character under cursor (only if character 
is one of the ascii character set, other than ASCII 254 (see below)). If character under 
cursor is not an ASCII character, program reports that æSX command requires a num-
ber.’
0-9, 01-09, and 000-799 are all different.

Embedded commands (such as format commands and program calls) and mathematical 
expressions are not, when saved with the sv call, “evaluated”, but treated as regular 
text.

Examples:

«sv01,Y»    ─saves “Y” as phrase 01
«sva,WEBER.DOC»  ─saves “WEBER.DOC” as phrase “a”
«svA,WEBER.DOC»     (“a” and “A” are same phrase)
«sv56,49.034»       ─saves “49.034” as phrase 56
«sv57,49.034+1»  ─saves “49.034+1” as phrase 57
«sv3,«IP5»»    ─saves ip5 delta as phrase 3
«sv83,RC RC RC »  ─saves three rubout-characters
              (delete) functions as phrase 83

Note: the example in the fifth line saves the string as a string, and does not evaluate it, i.e., 
does not add the two numbers and save the sum as 50.034.  But see what happens with sx 
(below): «sx56,«pv57»» does evaluate it, and «pv56» would then display 50.034.

50                                                                        CPG  Chapter 4: XPL Program Calls



In addition to the above use of sv, which is of the form «sv01,#», there are two other uses, 
each of a slightly different form: «sv#,» and «sv#».  The first, in which there is nothing fol-
lowing the comma, saves nothing to the phrase specified.  By doing that it clears from 
memory anything already saved to that phrase, and ensures that it will be available for use in 
the program in which the sv is embedded.  For example, suppose the program is going to 
make use of phrase 799, where there might be something left from a previous program run 
during the current working session.  «sv799,» removes anything that may be there.  In addi-
tion, a program will not recognize a phrase as empty, unless it has been specifically emptied.  
If, for example, you want a program to treat the extended phrase 01 as being initially empty, 
it will not recognize it as that until you embed in it the call «sv01,», even although at the out-
set of the program there will be nothing stored at 01.

«sv#», where there is nothing following the #, not even the usual comma, has yet a different 
function.  It is used in just one situation, viz., where the program in which it is embedded has 
just defined a block of text.  «sv#» saves the defined block to the phrase specified, where it 
will be kept in memory.  For example, a variation on the earlier example of defining a para-
graph and moving it might run: DP «sv25»YD.  That defines the current paragraph, saves it 
to phrase 25, and then clears the definition; the defined block remains stored in memory, and 
by use of the pv call (see Inserting a Phrase) can be reinserted into the text area of a file at 
any time during the remainder of the program.

Note: this function of «sv#» is not available in versions of Nota Bene before 3.1. In them it’s 
possible to save defined blocks only to regular phrase keys (a-z, 0-9), and it’s done by using 
the function code SV. The previous example would in earlier versions be: SV 1YD

Save eXpression ────────────────────────────────────────── 

sx   «sx#,expression»  where # is a-z, 0-9, 01-99, or 000-799

“evaluates” or performs an operation on numbers, strings, and variables, and stores result in 
specified phrase; in addition, reads and “identifies” characters typed from the keyboard, cur-
sor and column position, the number of windows open, the amount of free memory, or any 
other of many values (see Values below).

If sx is executed on the command line when in Page Layout View, an input window 
opens for entry of the expression to be saved (as with Ctrl F10 for opening a note 
window).  But, as previously recommended, Show Codes View should always be used 
when writing a program.

Actual text is not allowed within an expression. Strings must be referred to by using 
the is command—or by enclosing them in straight double quotation marks (see exam-
ple below and InSert phrase later).

Within expressions the plus operator concatenates strings (see example), whereas rela-
tional operators (e.g., “<=” and “==”) compare strings according to their sort sequence; 
other operators are described in the “Mathematical & Logical Operators” section.

Examples: (based on previous sv examples)

CPG  Chapter 4: XPL Program Calls                                                                        51



«sx34,«pv56»+23» ─adds 23 to value of phrase 56 (49.034)
       and saves result (72.034) as phrase 34
«sx56,«pv56»+1»  ─adds 1 to value of phrase 56 (49.034)
       and saves new value (50.034) as same phrase
«sx56,«pv57»»  ─evaluates the value of phrase 57,
       and saves it (50.034) as phrase 56
«sx56,«pv57»+«pv34»» ─adds the values of phrases 57 and
       34, saving the result to phrase 56
«sx10,«cp»»  ─saves cursor position as phrase 10,
         i.e., registers the number of
       bytes/characters from the top of the
       file to the cursor’s current location
«sx99,«va$wn»»  ─saves window number (see Values
       below) as phrase 99
«sx5,«is01»+«isa»» ─saves as phrase 5 the strings saved
       on phrases 01 and a; result:  YWEBER.DOC

Text in double straight quotation marks:
Actual text cannot be used within an sx, except within double straight quotation marks. So 
the following would be invalid:

«sx5,«is01»+ if file is +«isa»»

The old method of getting round this was to save “if file is” as a phrase, e.g., 2:
«sv2, if file is »

Then use:
«sx5,«is01»+«is2»+«isa»»

This would save as phrase 5 the sequence of strings on phrases 01, 2, and a:
Y if file is WEBER.DOC

But now you can simply enclose the text in double quotes:

«sx08,"A rolling stone"» saves ‘A rolling stone’ in phrase 08.
«sx09«is08»+" gathers no moss"» saves as phrase 09 the phrase saved on phrase 01
    and ‘" gathers no moss’ - result:
    ‘A rolling stone gathers no moss’

So in the WEBER.DOC example above, you don’t need to save ‘if file is’ to phrase 02. 
Instead, simply do:

«sx5,«is01»+ "if file is" +«isa»»
Result: Y if file is WEBER.DOC

SUbroutine ───────────────────────────────────────────── 

su   «su#,subroutine» where # is a-z, 0-9, 01-99, or 000-799

saves text, or a section of programming code that can be inserted or “called” at any point in a 
program using the pv command and executed.  su stores without evaluating, and is almost 
identical to sv: it is named differently only to indicate what the phrase involved is designed 
for, viz., saving text, function codes, XPL statements, procedures, or complete programs─or 

52                                                                        CPG  Chapter 4: XPL Program Calls



any mixture of them.   The contents stored on a phrase by su are treated by Nota Bene as a 
program.

If su is used, it is advisable, and often necessary, to add a paragraph marker before the 
final closing command bracket.

If su is used for saving programming code, its phrase can be executed either with pv or 
with gt.  If sv is used, only pv will execute it.  Also, if su is used for saving text, gt will 
insert it either in the text area or on the command line, as you wish; if sv is used, gt will 
insert it only in the text area (see Get Text below)

An su can contain any program material, including program functions and program 
calls.  Labels within a subroutine should not duplicate labels in the main program.  If 
they do, a go-to-label call «gl...» (see Go to Label below) may find the wrong label, 
and prevent the correct execution of the program

Examples:
«suj,BC run jump3.runXC » ─saves on phrase key J the
    command to run a program called
    ‘jump3.run’.  Any time you strike
    Alt-J, that program will be run.

For an alternative method of using a phrase key to run a program without loading that pro-
gram on the key see Loading indirectly on a Phrase Key in Chapter 9

«su101,DP AS BF CP AS XD » ─saves on phrase 101 the program for
    copying paragraphs from one file to
    another (see Sample Program: Text
    & Program Functions in Chapter 5

An economical and efficient way of running a program is
  (i) to create the program, and save it complete in a subroutine, as in 

«su199,<program>»;
  (ii) to create a second program consisting solely of the matching «pv», in this 

case «pv199»; then to run the latter from a keyboard key or a phrase key, 
or to add it to the U2 compendium.

See Program using subroutine section in Chapter 5 for further discussion of such sub-
routines.

Inserting a Phrase

There are three different commands for inserting phrases, i.e., inserting what has been pre-
viously saved to a phrase.  They are pv, gt, and is.  If either sv or su was used to save, either 
pv or gt can be used to insert; rules determining where and how they will insert are given in 
the appropriate sections below.  is inserts a string only inside the expressions sx and if.

CPG  Chapter 4: XPL Program Calls                                                                        53



Put Variable ──────────────────────────────────────────── 

pv   «pv#» where # is a-z, 0-9, 01-99, or 000-799

The pv program call has a double function, depending on whether it has been saved as a 
string, or as an expression.  The phrase can be a string saved with sv above (or defined and 
saved using «sv#» during a program); or a string that has been “operated” upon and saved 
with sx (see sx above), or a numerical result of an expression.  If the phrase is a string of text 
(alphabetical and/or numerical) that has been saved with sv (or defined and saved using «sv#» 
during a program), it inserts that text, and does so sequentially (like a fast typist), rather than 
instantly.  If the string has been saved inside an expression, with sx, pv is taken to be a num-
ber, not a string.  It can be, e.g., added to a number (as in «sx10,«pv11»+1») or to another 
numerical phrase (as in «sx10,«pv11»+«pv12»»); see examples under sx above.  It can be 
evaluated, either against a natural number (e.g., expressing the condition ‘if «pv10» is greater 
than 1’), or against another phrase that contains numerical values (e.g., the conditional ‘if 
«pv10» is greater than «pv11»’).

Additionally, if the string has been saved with su rather than sv, and is a program, or a por-
tion of one, then pv will execute it, instead of inserting the string into text or command line.

If a pv is used in a program to insert a command bracket in a file that is on screen in Page 
Layout View, the “Extra « bracket” message appears until the closing “»” is added. To 
avoid this, have the program switch the display mode of the file to Show Codes View, or 
insert the phrase by using the “get text” (gt) program call (see next page).

Examples: (based on sv examples in Save Variables)

BC «pv01»   ─puts “Y” on command line
LE «pv56»   ─puts “49.034” at end of line
BC ca «pva»   ─puts phrase “a” on command line
BC «pv3»    ─puts «IP5» on command line

There is one case where «pv#» is used, although there has been no previous «sv#,»; it is the 
only case where pv can be used without an earlier sv, su, or sx.

«pv00»   ─puts into the program either part, or all, of the current contents  
of the command line.

If the command there is followed by a separator, such as a comma (or a space), and that fol-
lowed by a string of characters (known as an ‘argument’), then «pv00» inserts the argument 
into the program.  E.g., if the command on the command line is ‘run program.run,today’, 
«pv00» inserts ‘today’ at the cursor location.  Or suppose you wanted a program that would 
locate the cursor at a specified number of bytes from the top of the file.  This program would 
do it:

BC jmp «pv00»XC  If the program were called ‘jump.run’, the command run 
jump.run,25000 would locate the cursor 25000 bytes from the 
top of the file.

54                                                                        CPG  Chapter 4: XPL Program Calls



If the command does not have a separator followed by an argument, e.g., ‘run program.run’, 
then «pv00» inserts the command itself into the program.

If the string in pv is programming code, and has been saved with su, pv will execute it.
Example:

«su25,DF CL CL CL CL DF »«pv25»  ─will execute that portion of the program

Get Text ────────────────────────────────────────────── 

gt   «gt#» where # is a-z, 0-9, 01-99, or 000-799

inserts saved string at cursor position in the text, if the string has been saved with sv.  It 
inserts it instantaneously, as if it were a defined block being copied or moved (and therefore 
is quicker than pv); and it leaves the cursor at the beginning of the string, as contrasted with 
pv, which leaves the cursor at the end of the string.  (You can make gt leave the cursor at the 
end of the string by embedding the following code immediately after the gt delta:

      «sx02,«cp»»«sx03,@size(«is01»)»«sx04,«pv02»+«pv03»»BC jmp «pv04»XC

substituting for the 01 in «is01» the number of the phrase in the «gt..» call.)

gt cannot be used to insert text into an expression; is (see next  section) must be used for that.  
gt will not insert a string on the command line, unless the string has been saved with su.  In 
that case it will insert the string either in the text or on the command line, whichever you 
want.  Also, if what has been saved with su is a program, or a portion of it, gt can be used to 
execute it.

Examples:
«sv25,A passage of text»«gt25»  ─enters string of text in text
«su25,A passage of text»BC «gt25» ─enters string of text  on command line
«sv25,DF CL CL CL CL DF »«gt25» ─enters string of code in text
«su25,DF CL CL CL CL DF »«gt25»   ─executes a portion of program

InSert phrase ─────────────────────────────────────────── 

is   «is#» where # is a-z, 0-9, 01-99, or 000-799

inserts string (text, or numbers considered as text) within an expression.  is is used only 
within sx and if statements, and only if the string consists of text and/or numbers treated as 
text.  If the string ‘Dragonfly’s’  has been saved to phrase 01, and the string ‘Nota Bene 4.2’ 
to phrase 02, then «sx03,«is01»+«is02»» would save ‘Dragonfly’s Nota Bene 4.2’ to phrase 
03, and «gt03» would insert it into a file’s text.

is is also used in programming 
—for comparing strings (e.g., ‘if «is01» is textually the same as «is02»’)
—if the expression within which it is being used contains certain operators:
— + of concatenation (i.e., joining two strings, as in the previous example; not the + of 
mathematical addition)

CPG  Chapter 4: XPL Program Calls                                                                        55



—î of inclusion
—@siz, @upr, @cnv.    See the Operators sections, below, p 68

Examples:

«sv01,Dragonfly’s »«sv02,Nota Bene»«sx03,«is01»+«is02»»«pv03»
     ─enters Dragonfly’s Nota Bene in text
«sv01,10»«sv02,20»«sx03,«pv01»+«pv02»»«pv03» enters 30 in text
«sv01,10»«sv02,20»«sx03,«is01»+«is02»»«pv03» enters 1020 in text

Other Calls

IF ────────────────────────────────────────────────── 

if   «if(expression») (parentheses are optional)

a conditional expression that begins a program segment that is to be executed if the stated 
expression is true, or skipped if it is false.  Unlike many ordinary conditionals, which state 
what is/will be the case, or what is to be done, or will happen, if the conditional is fulfilled, 
but leave it open what is/will be the case, etc., if the conditional is not fulfilled, the ‘ifs’ of 
programming are narrower and more rigid.  They stipulate both what the program is to do 
if..., and what it is to do if not...; i.e., they are always of the form ‘if such-and-such, do this, 
otherwise/else do that’.

If the conditional is true, all code between the if and the closing «ei» is executed.
If the conditional is false, the program begins to execute the code that immediately fol-
lows the ei.
The result of the “evaluation” is not saved in a phrase key, unlike sx.

Examples: (based on original sv examples)
«if«pv56»==46»  ─False: phrase 56 has a value of 49.034.
«if«pv56»==49.034» ─True: Value of phrase 56 is equal to 49.034.
«if«pv56»>49.034» ─False: 49.034 is not greater than itself.
«if«pv56»<=49.12» ─True: Value of phrase 56 is less than 49.12.
«if«is56»=>40»  ─Command entry error: A string (referenced
           by ‘is’) can’t be compared with a  number
          (40)considered as a number, not as a string.

Assuming that «sv41,Mauss» and «sv42,Durkheim» have been assigned, the following 
expressions have the specified values:

 «if«is56»==«is41»»
   False: The string saved on phrase 56 (49.034) is not identical in sort 

sequence to that on phrase 41 (Mauss).
«if«is42»<«is41»»

   True: The string saved on phrase 42 (Durkheim) comes before that saved 
on phrase 41 (Mauss) in sort sequence.

56                                                                        CPG  Chapter 4: XPL Program Calls



You cannot nest if conditionals, as you can in other programming languages.  But you can 
achieve the same effect by jumping to a label (see final example in this section), evaluating a 
second conditional, and then returning to the original position (which has been tagged with a 
label of its own).

[Read sections on End If, etc.., on following pages, then return to this point:]
 End If («ei»), LaBel («lb»), Go to Label («gl»), ERror («er»), EXit («ex»)]

Because if requires that the program specify what is to be done if the «if» conditional is false, 
it is essential that every «if» be complemented by an «ei», indicating that that is the end of the 
conditional clause, and leading directly to the specification of the course to be followed if the 
conditional is false.
Examples:

«if«is56»==«is41»»«glNEXT»«ei»«ex»f the strings on phrases 56 
     and 41 are identical, go to label
     NEXT; otherwise exit program
BC se \clause\XC «if«er»»«ex»«ei»                  ─search for the next occurrence
     of the string ‘clause’; if there
     is an error, i.e., if no further
     occurrence is found, exit program
«lbSEARCH»BC se \clause\XC «if«er»»     ─if there is no error, i.e., if another
«ex»«ei»«glSEARCH»   occurrence of ‘clause’ is found,
     go to the label SEARCH, and
     repeat this part of the program:
     search for the next occurrence of
     ‘clause’.

The third of those examples completes the second: it specifies both what is to be done if no 
further occurrence of ‘clause’ is found and what is otherwise to be done.  In this case it pres-
cribes a loop, i.e. that the search for occurrences of ‘clause’ is to be continued until no further 
occurrences can be found.  The following example would set up an endless loop:

«lbSEARCH»BC se \clause\XC «glSEARCH»
It requires a search for the next occurrence of ‘clause’ to go on repeating itself indefinitely, 
with no provision for what is to be done when no further occurrences can be found.  This 
illustrates the need
  (i) for the combination of if and er, providing for the event of there being no 
more occurrences of ‘clause’;
  (ii) for ex, providing for a way of ending the program and thereby preventing an 
endless loop; and
  (iii) for gl and lb, providing for the search to continue as long as occurrences of 
‘clause’ are to be found.

«lbSEARCH»BC se \clause\XC «if«er»»«glIF»«ei»«glSEARCH»«lbIF»«if...»
    ─this illustrates the branching of «if»s.  The
    first one stipulates that, if no occurrence of
    ‘clause’ can be found, the program go to label
    IF; and at that label a second «if..» starts.

CPG  Chapter 4: XPL Program Calls                                                                        57



End If ──────────────────────────────────────────────── 

ei   «ei»

marks the end of a segment of program code that begins with if.  It is essential that every «if» 
segment be concluded with an «ei».  Otherwise the code that follows will be interpreted as 
part of the conditional clause, instead of specifying what is to be done if that conditional is 
false; the program will not execute correctly.

The code after the ei will be executed regardless of the truth or falsity of the if clause, 
unless that clause
 (i) contains an ex, which terminates the program , thereby preventing the 

code following the ei from being reached, or
 (ii) contains a gl, which directs the program to a label and may bypass the 

code immediately following the ei.

LaBel ──────────────────────────────────────────────── 

lb   «lbNAME»

labels a point in the program to which you can later jump (either backward or forward) to 
resume execution from that point.

Label names must exactly match in spelling and case the names used in goto-label (gl) 
commands.  If the match is not exact, the «gl..» will be unable to find the correct «lb..»

Do not duplicate a label name within a program, or in two programs if one is a sub-
routine of the other.  If a label name is duplicated, the goto command may find the 
wrong one; and the program will not execute correctly.

Labels can be inserted at any point within a program.  Although there should be a label 
matching every goto command, the reverse is not true.  Therefore labels (unmatched 
with gotos) can be freely used in a program.  A label containing nothing but a para-
graph marker is useful for breaking up a long program (see example below), thereby 
making it easier to read and edit.

Labels can be of any length (though shorter labels are easier to use).

Labels can be used for comments to yourself within a program (such as why something 
was done a certain way). This can be helpful when writing or revising a long or compli-
cated program, because the comments will serve as reminders of what this particular 
section of programming code is doing.

 

Labels inserted from the command line (with F9 lb label F10) will retain their case 
exactly as typed (see note below)

58                                                                        CPG  Chapter 4: XPL Program Calls



Examples:
«lbtest»   ─creates label called “test”

«lb─return here when finished with #5»
   ─creates label indicating when to return

GO to Label ──────────────────────────────────────────── 

gl   «glNAME»

goes to the label bearing the same name and continues execution with the commands at that 
point.

The gl name must exactly match the lb name in spelling and case.

If you enter a gl delta from the command line (with F9 gl label F10), the label name 
will be inserted with all capital letters.  This is not the same result as inserting lb deltas 
(see note above); therefore, it is important to check that the gl and lb names are strictly 
identical.

Because the program goes directly (either forward or backward) from a «gl..» command 
to its matching «lb..» command, a paragraph marker can always be inserted after a 
«gl..» command; it must come after it, not inside the «gl..» itself.  It will not be inter-
preted as part of a program, and the insertion of a blank line at that point serves to 
break the program up at that stage, making it easier to read and to edit.

This feature of a «gl..» command, that it jumps straight to its corresponding «lb..» com-
mand, disregarding anything in between, can be used to insert at the start of a program 
file any comments on it, or explanation of it, that the author wishes to include.  If, for 
example, the comments are prefixed by the goto command «glSTART», and if the pro-
gram coding is prefixed by the label «lbSTART», the comments can be read by calling 
the program file to the screen; and the program can be run correctly, because, having 
read the «glSTART» command it will jump immediately to the«lbSTART» label, dis-
regarding everything in between.

Alternatively comments and explanations can be inserted into the file after the program 
codes.  The program will quit when it reaches an «ex»; and therefore the textual matter 
in the comments will not interfere with its execution.

CPG  Chapter 4: XPL Program Calls                                                                        59



eXtract String ─────────────────────────────────────────── 

xs   «xs#,#,#,#,#,» where each # is different, drawn from
     a-z, 0-9, 01-99, or 000-799
parses the string saved on the first phrase in a way that makes it possible to extract and use 
each of the component parts of the string independently of the others.  The analysis of the 
string is determined by the values of the first two phrases.

The first # is the number/letter of the phrase where the string to be parsed is stored.  The 
string could be the command on the command line, or an argument following that command 
(in which case the phrase’s # will be 00), or it could be a phrase to which a string or express-
ion in the program has previously been saved (in which case it will have that #)

The second # is the number/letter of the phrase where you have stored the string that you 
wish to be the parsing operator

Example:
If you wanted to be able to parse the filename MYFILE.TXT, perhaps in order to have 
a program change either the name or the extension, then
«sv01,.»«sv02,MYFILE.TXT»            would provide the first two phrases of the
                «xs» call:
«xs02,01,#,#,#»
The remaining three #s can be any that you choose for saving the three parts of the 
string to be parsed
#3 will contain that part of the initial string that precedes the parsing operator
#4 will be identical with #2, with one exception (see below)
#5 will contain that part of the initial string that follows the parsing operator

If the phrase numbers for #3, #4, and #5 are, say, 03, 04, and 05, the total xs call in this 
case will be «xs02,01,03,04,05», with these values:
02  MYFILE.TXT
01  .
03  MYFILE
04  .
05  TXT

It is now possible for a program to perform operations on this filename without affecting its 
extension, or vice versa.

[Explanatory note: MYFILE.TXT consists of 3 parts: (1) MYFILE; (2) . (a period); (3) TXT. 
XS separates (parses) them , putting each part into one of the last 3 phrases: 03, 04 and 05. 
03 contains MYFILE; 04 contains . ; 05 contains TXT.]

The string to be parsed and the parsing operator (in phrases 02 and 01 in the example) must 
neither of them be numbers.  If they are, xs will not work; it works only with string data.  If a 
number is first converted to a numerical string [of numbers-as-text], then it will work.  If you 
wanted to use xs to preserve only the integer in the number 1234.56, it would not do it; but, if 
you first converted that to the numerical string 1234.56, it would.

60                                                                        CPG  Chapter 4: XPL Program Calls



xs makes it possible to perform operations that previously were either extremely difficult or 
even impossible.  Nota Bene’s two command brackets (« and »), for example, create prob-
lems, if you try to introduce them as characters in a program.  But with xs you can save each 
of them to a phrase, and then use that phrase in a program as you wish:

Program to insert command brackets in program
«sv01,.»«sv06,«.»»«xs06,01,02,03,04»
06  «.»
01  .
02  «
03  .
04  »

Wherever the program calls for the insertion of « or », «pv02» or «pv04» will do it.

Wildcards (see below) may be used as (or in) the parsing separator; and this is the one case 
where the string saved at #2 and that saved at #4 will not be identical: in #4 the wildcard of 
#2 is replaced by the actual text that matches it.

Another advantage of xs is that it can be used recursively.  This enables you, for example, to 
get a program to branch to a specified one of a possibly long list of options; or to remove a 
number of unwanted characters from a string.  Changing a file’s filename and drive/path to 
just its filename (e.g., changing ‘c:\nb\prgrm\mailclr.run’ to ‘mailclr.run’) can be automated 
by getting xs successively to delete each ‘\’ and the string preceding it until there are no ‘\’s 
left.

Wildcards
This list is a visual representation of wildcards. Chapter 8 contains the same list, but with 
actual wildcards. The wildcards in  Chapter 8 can be copied and pasted into programs; these 
cannot.

0-9  or ^0-^9 Defines maximum no. of times the character can
     appear in the string
A  or WA  or ^A Any single letter or number
-  or ^B or ^- Any but next single character (represents NOT)
L  or M or WC  or ^C Carriage return character [Ascii 17, ’ ]
X  or ^E or ^+ ?? Any single sentence separator
X  or ^F Line Feed Character
L  or WL  or ^L Any single letter A-Z
N  or WN  or ^N Any number 0 through 9
O or ^O Allows search for more than one string
P  or  ^P Regular or Alternate paragraph return
@  or ^R Regular paragraph return
F  Carriage return+linefeed  (Enter with ‘func WC’)
S  or  WS  or ^S Any single separator
X  or  WT   or ^T Tabs
W  or WW  or ^W Any string from 1 to 80 characters. Must be used
     with at least 1 other character. ‘se /x^W/’ works;
     ‘se /^W/’ doesn’t.
X or WX  or ^X Any single character

CPG  Chapter 4: XPL Program Calls                                                                        61



To put a wildcard that looks like a reverse-video single character into a program or the key-
board, do ‘func nn’ plus the character.
To put one of these on the command line, do F9 func nn F10, then press the appropriate letter 
or number (e.g., ‘n’ for any single number). The wildcard will appear on the command line at 
the end of the ‘func nn’ command. You can erase ‘func nn’ and substitute (for instance) a 
search command.
To put one into a program, do  F9 func nn Alt F8 F10
To put double-character wildcards into a program,  do ‘pfunc’ plus the 2 characters.
To put these  on the command line, enter them into text with pfunc, then cut and paste to the 
command line.
To input caret + letter wildcards (e.g. ^L) into text or on the command line, type the caret 
character plus the letter.

In NB for Windows, you can use wildcard characters on either side of a change string. E.g.,
 BX ci /rolling^Wmoss/rolling stone^Wmoss/Q2
will change ‘A rolling gathers no moss’ to ‘A rolling stone gathers no moss’

ERror ──────────────────────────────────────────────── 

er  «er»

used in conditional expressions to indicate an error condition, such as a specified file not 
being found, or the failure of a search.

The result is true if there was an error in the previous command; otherwise, it is false.

The value-of-error (va$er) command can be used to display the numerical code cor-
responding to a specific error condition (see Values section for details).

Examples:
BC se \Handel\XC «if«er»»BC abXC «ei»
  ─abandons file if “Handel” is not found

BC ca memo.522XC «if«er»»«glnextfile»««ei»
  ─goes to “nextfile” label if MEMO.522 doesn’t exist

EXit ───────────────────────────────────────────────── 

ex   «ex»

exits from the current program (and continues with the main program if the current program 
was a subroutine)

 ex1   «ex1»

exits from the program entirely, regardless of whether you were in the main program or in a 
subroutine

62                                                                        CPG  Chapter 4: XPL Program Calls



In most cases ex is sufficient to terminate a program; it will always do it, if it is part of the 
main program.  Because ex1 will always halt a program completely, it should be used with 
care.  Sometimes, when a program will not run through to its end, it is because an ex1 has 
been encountered where there should have been an ex.  At other times, when it looks as if an 
ex will be sufficient, an ex1 will prove to be necessary, to get the program to clear com-
pletely.

Error Suppression ──────────────────────────────────────── 

es    BC es #XC   ES 1 to suppress bell and error messages
In a program in which beeps and error messages would otherwise occur (e.g., one involving a 
Search command that would beep and display the ‘Not Found’ message) it saves time and 
avoids interference, if you include in the program the command BC es 1XC to suppress 
them.  In NB for Windows it is no longer necessary to reactivate ES with command BC es 
0XC.

Read Character ────────────────────────────────────────── 

rc   «rc» reads character typed on keyboard
rk   «rk» ditto, reading it as upper case

The character read can be thrown away, saved in a phrase or evaluated (see String Opera-
tors section)

Examples:
«rc»  ─reads character; inserts it or performs function
«sx01,«rc»» ─reads character, saves it as phrase 01  for later use
«sx01,«rc»»«pv01» ─reads character, saves it as phrase 01, inserts it into
        text

The effect of «rc» is that the program pauses for you to strike a key, and resumes as soon as 
you have.  How it resumes depends on the instructions that follow the «rc» call.  A common 
use is in programs where the user has to make a choice between various options, such as 
‘Y/N’; if the user enters Y, the program goes one way; if N, it goes another way.
Example:

«sv02,Y»«sx01,«rc»»«if«is01»==«is02»»«glOne»«ei»«glTwo»
If the key pressed is Y, the program goes to label One, otherwise it goes to label Two.

The example illustrates two further points:
   (i) If the key to be matched is uppercased, e.g., Y, then strik-
ing lowercase y when the program pauses at the «rc» call will not do.  Y is not identical with 
y (Y is ASCII 89, y is ASCII 121), and so the condition in «if«is01»==«is02»» will not be 
satisfied.  Pressing y will have the effect that the program will follow the second option, not 
the first that you wanted. There are two ways to prevent that.  One is to use the string operator 
@upr (see String Operators below), which uppercases the character, if it has been entered 
in lowercase.  In the present example, if the program had been:
 «sv02,Y»«sx01,@upr(«rc»)»«if«is01»==«is02»»

CPG  Chapter 4: XPL Program Calls                                                                        63



then pressing either Y or y would cause the program to take the Y option.  The character you 
entered (say, y) was saved on phrase 01, and then the character (y) saved on 01 was upper-
cased and saved again on 01 (i.e., as Y).

  (ii) If there are just two options, as in this case Y and N, there 
is no need to specify the second.  It is sufficient that the program is told what to do if Y is 
pressed, and what to do if some other key is pressed.  When running the program, if you 
don’t want option Y, it does not matter what other key you press: the program will take the 
second option.  If you had included in the program the call «sv03,N», then you would have 
also to have «if«is01»==«is03»«glTwo» «ei», and you would have to press N, if you wanted 
the second option; no other key would do.  It is, therefore, more economical and efficient, 
when you are writing a section of program that requires just two options, not to specify a key 
that must be pressed if the second option is to be chosen.

The other way round the problem caused by the difference between lower and upper case is to 
use rk instead of rc.  The only difference between the two calls is that «rk» automatically 
uppercases the string that is entered.  It is suitable for an instance like the present, where the 
string consists of only one character, but in instances where the string to be entered consists 
of more characters than one, it can be a nuisance: you do not always want everything that you 
enter at the keyboard to be uppercased.  Also, with some characters, the use of rk simply 
reverses the shifted and unshifted characters: whereas «sx01,«rc»»«sx01,@upr(«is01»)» will 
record all the keyboard’s numerical keys correctly, whether they are entered shifted or 
unshifted, «rk» will record« both 1 and ! as 1, 2 and @ as 2, etc.

Here is an example of using «rk», taken from the XYWWWEB.U2 program compendium. It 
uppercases the character typed at the keyboard, and proceeds to fulfil the if-clause if the 
character typed was y or Y.
  «sv02,Y»«sx01,«rk»»»«if«is01»î"Yy">0»

Often, you will want a program to pause while you enter from the keyboard, not a single 
character as in the ‘Y/N’ example, but a string of characters, such as a filename, or a string to 
be searched for.  «rc» by itself is not sufficient for that.  But you can write a section of pro-
gram in which you instruct the program

(i)  to read the character you enter;
(ii)  if the character is identical with one that you have previously specified, to continue 
with the program’s execution;
(iii)  if it is not identical, then to save the character to a phrase, and to append that to 
the phrase on which the original character has been saved (in (i) above);
(iv)  to continue the process until the key specified in (ii) is struck.  Let us suppose that 
the specified key is the asterisk, then the following section of coding will do what you 
want

Routine to read keyboard input 
«sv20,*»«sv26,»«lbChain»«sx25,«rc»»«if«is25»==«is20»»«glResume»«ei»
«sx26,«is26»+«is25»»«glChain»

64                                                                        CPG  Chapter 4: XPL Program Calls



If the key struck is the asterisk key the program goes to the label Resume (somewhere else in 
the program); otherwise it saves to phrase 26 what was originally there (nothing) plus the 
character saved on phrase 25, and starts the loop again.  If the next character entered is still 
not the *, then the program saves on phrase 26 the character that was already there, plus the 
new one; and so on, increasing the string saved on phrase 26 character by character, until the 
* key is finally struck.  Eventually, when the * key is struck, the program goes to the label 
Resume.  If «lbResume» is followed by, say, «gt26», the total string saved on phrase 26 will 
be inserted in the text at that point.

Cursor Position ────────────────────────────────────────── 

cp «sx#,«cp»» where # is a-z, 0-9, 01-99, or 000-799

used within an expression to indicate the current cursor position, expressed as the number of 
characters from the beginning of the file

See notes under jmp below for what counts as a character.
Examples:

«sx21,«cp»»BC Cursor at «pv21» bytes from Top of File
 ─displays on the command line a message
    reporting the current cursor position

«sx21,«cp»»BF «sx22,«cp»»«sx22,«pv22»+1»BC jmp «pv21»XC BC «pv22» charac-
ters in file 
 ─displays on the command line a message reporting the
    number of characters in the file, and  returns to current
    position in file.

«sx21,«cp»»BF «sx22,«cp»»«sx22,«pv22»+1»«sx23,(«pv22»/7)»BC jmp «pv21»XC 
BC About «pv23» words in file
 ─similar, but reports approximate number of words in file

Column Location ───────────────────────────────────────── 

cl «sx#,«cl»» where # is a-z, 0-9, 01-99, or 000-799

used within an expression to indicate the current column location
The columns are numbered from 0 through 254
Examples:

«sx01,«cl»»«sx02,«cp»»BC Cursor is in column «pv01»GT
─saves current column location to phrase 01, and current cursor location to
   phrase 02
BC jmp «pv02»XC
─makes cursor jump to column location saved on phrase 01
  (identical with cursor location saved on phrase 02)
BC ip 0,«pv01»XC
─sets hanging indentation at column saved on phrase 01

CPG  Chapter 4: XPL Program Calls                                                                        65



cl can be used for a variety of other purposes, such as drawing a line between predetermined 
points.  Note: a program cannot directly jump (see following section) to a given column loca-
tion, only to a character location identified with it, as in «sx01,«cl»»«sx02,«cp»» above.  The 
jump would have to be made to 02, not to 01.  But the difference between two column loca-
tions in a single line can be calculated, and made use of by the program.

JuMP ──────────────────────────────────────────────── 

jmp  BC jmp #XC
causes cursor to jump to character # from beginning of file

Embedded commands are counted as they appear in Expanded Display mode.
The paragraph marker is counted as two characters (a carriage return and line feed).

Characters entered as three-character sequences are counted as three characters (see 
Reference Manual, p. 387).

Example:
BC jmp «pv02»XC ─jumps to cursor location saved on phrase 02

The following program would cause the cursor to jump to any location in a file that you indi-
cated by the argument on the command line:
BC jmp «pv00»XC.  If you call that program JUMP.RUN, and run it with the command BC 
run jump.run,#XC  replacing an argument # with the number of the location you wanted to go 
to, the program would position the cursor at that place in the file.

Argument Insert ────────────────────────────────────────── 

as        «as»

“passes” the string typed after the program’s filename on the command line (after a comma, 
or other separator, following the run x:program command) to the program so that, for exam-
ple, the program can operate on the designated file at the indicated point within the program.

«as» performs just the same function as «pv00», with one difference.  If the program contain-
ing «as» is run with the run command, the «as» records only the argument on the command 
line (if there is one); if there is no argument-string there, it does not record the command 
itself.  But «pv00» will do either, and is to be preferred.

Examples:
BC ca «as»XC
─if that command is embedded at a certain point in a
   program, then at that point it will call the file that
   is specified by name, after program name, when the
   program is executed.  E..g, if a program called SEARCH
   was run with run search,demo, the file DEMO would be
   called at the indicated point in the program

66                                                                        CPG  Chapter 4: XPL Program Calls



Mathematical Operators ───────────────────────────────────── 

+   addition «sx20,4.25+17»
-   subtraction «sx21,100230-45374»
/   division «sx22,1000/.0825»
*   multiplication «sx24,2.34*9.56»
     These operators can also be used in combination
     with each other, using parentheses as required:
     «sx25,45+(.059/(56.34*102))-.034»

Note: the + of addition must be distinguished from the + of concatenation: the first produces 
the sum of the two strings (as numbers), the second joins the second string to the first string 
(both as text)
Examples:

«sv01,10»«sv02,15»«sx03,«pv01»+«pv02»»GT «pv03»
    ─in phrase 03 adds the value of phrase 02 to
    that of phrase 01, and inserts the result into
    text area as 25
«sv01,10»«sv02,15»«sx03,«is01»+«is02»»GT «pv03»
    ─in phrase 03 joins the string in phrase 02 to
    the string in phrase 01, and inserts the result
    into text area as the string 1015

Comparative Operators ───────────────────────────────────── 

==   equal to (double “==” is required)
<   less than
<=   less than or equal to; variant form: =<
>   greater than
=>   greater than or equal to; variant form: >=
<>   less than or greater than (not equal to)

For numbers, these expressions compare numerical values; for strings, they compare sort 
sequence.  Two strings are identical if they have exactly the same sort sequence (down to the 
last character).

Examples:
«if«pv01»=>2»«gl2»«ei»
«if5==2»«glnotso»«ei»
«if«pv29»<>470.45»«gltax3»«ei»
«if«is30»==«is40»»«prLines are identical»«ei»

Logical Operators ───────────────────────────────────────── 

&   performs a logical and of two values
  «if((«pv50»>25)&(«is28»==«is29»))»
   True only if both expressions are true

!   performs an inclusive or of two values

CPG  Chapter 4: XPL Program Calls                                                                        67



  «if((«pv50»>25)!(«is28»==«is29»))»
   True if either or both expressions are true

@Xor  performs an exclusive or of two values
     «if((«pv50»>25)@Xor(«is28»==«is29»))»
       True if one, but only one, is true

@not   performs a not of the following value
     «if@not(«pv25»==10)»
      True if phrase 25 is not equal to 10

Sometimes in programming it is more convenient to use a negative conditional, e.g., “if there 
is no error, then...”, as in
  «if@not(«er»)»«glA»«ei»«ex»
    ─if there is no error go to label A, otherwise exit

String Operators

Element of ───────────────────────────────────────────── 

î  (ASCII 238) «sx#,«is#»î«is#»»1 where # is a-z, 0-9, 01-99, or 000-799
   determines if one string is contained in another
   The i-circumflex can be entered with Ctrlt+Shift+ 238.

   If the first string is not contained within the second, the result is
    indicated as “-1”.
   If the first string is contained within the second, the result is given as the 

character position in the second string at which the matching portion beg-
ins.

   Note: the first position in the containing string is 0, the second 1, etc.

Examples:
«sv01,Mark Twain»«sv02,Mark Twain»«sx21,«is01»î«is02»»
  The phrases begin to match at the beginning of the second phrase
  (i.e., at the 0 position). Result (recorded as phrase 21):  0.

«sv01,Twain»«sv02,Mark Twain»«sx21,«is01»î«is02»»
  The phrases begin to match at the sixth position of the second phrase.
  Result:  5.

«sv01,M. Twain»«sv02,Mark Twain»«sx21,«is01»î«is02»»
  String “M. Twain” is not contained in “Mark Twain”. Result:  -1.

NB: In Nota Bene for DOS, the î operator displayed as an I.
The î operator, providing a means of detecting whether a character/string is included within 
another string, can be used for prescribing different courses to be followed, depending on the 
location in the second string at which the first character/string begins to match it.  It is partic-
ularly helpful in programs where the user has to make a choice among a number of options: 
“If A, then..., if B, then ...,if...etc.”
Example:

68                                                                        CPG  Chapter 4: XPL Program Calls



Routine to branch to label whose letter the user inputs at keyboard
«sv01,ABCD»«prEnter A, B, C, or D»«sx02,«rk»»«if«is02»î«is01»<0»«glEnd»
«ei»«if«is02»î«is01»==0»«glA»«ei»«if«is02»î«is01»==1»«glB»
«ei»«if«is02»î«is01»==2»«glC»«ei»«if«is02»î«is01»==3»«glD»
«ei»«lbEnd»BC Wrong character entered«ex»
The program aborts if none of the specified letters is entered, i.e., if the letter entered is 
not contained in the string saved on phrase 01.  If the letter entered is contained in the 
string, the program goes to labels A, B, C, or D, according to the position in the string 
of the letter which is entered

Containment ──────────────────────────────────────────── 

ð (ASCII 240)   determines if one string contains another (true or false) [new in NBWin]
    It returns "TRUE" if string1 contains string2.
     It is principally  used in conditional tests, where the position of string 2 within
     string 1 is unimportant.  It is case sensitive. E.g., this program segment:
          «IF"limpet"ð"limp">«PR OK»«EX»«EI»«PR Not OK»«EX»
     returns ‘OK’—but this segment:
           «IF"limpet"ð"Limp">«PR OK»«EX»«EI»«PR Not OK»«EX»
 would not.

Size ───────────────────────────────────────────────── 

@siz   «sx#,@siz(«is#»)» where # is a-z, 0-9, 01-99, or 000-799;
      parentheses required

checks the number of characters in a string

Example:
«sv21,Jurgen Habermas»«sx22,@siz(«is21»)»
  records that “Jurgen Habermas” has 15 characters

This call, which is used with «is», is useful for detecting whether a character has a value of 1 
byte (as most, although not quite all, keyboard characters have), or is 3 bytes in length, as, for 
example, all function codes (such as BC , XC , DF ,etc.) are

Example:
Routine to branch depending upon whether FN or Alphanumeric key pressed 
«sx01,«rc»»«sx02,@siz(«is01»)»«if«pv02»==3»«glA»«ei»«glB»
  makes the program branch one way if the key struck was a function key,
  another way if it was an alphanumeric key

Uppercase ───────────────────────────────────────────── 

@upr   «sx#,@upr(«is#»)» where # is a-z, 0-9, 01-99, or 000-799;
      parentheses required

uppercases the designated string

CPG  Chapter 4: XPL Program Calls                                                                        69



Examples;
«sv03,Nasa»«sx23,@upr(«is03»)»
  reads “Nasa” and records “NASA” as phrase 23

Routine branches to label ‘cont’ if ‘y’ or ‘Y’ is struck.
«sv10,Y»«sx30,«rc»»«sx31,@upr(«is30»)»«if(«is31»==«is10»)»«glcont»«ei»
      records “Y” as phrase 10, reads character typed and records it as phrase 30,
      uppercases phrase 30 and records it as phrase 31, compares phrase 31 with
      phrase 10; if “y” or “Y” was pressed, goes to label “cont”.

Sometimes a program requires the user to enter a letter, as in the ‘Y/N’ choice, and will 
branch one way or the other, according to the letter struck.  But, as in the example above, it 
will recognize only uppercase Y, not lowercase y.   @upr uppercases a lowercase letter, if 
one was struck, so that the program will recognize it. The call rk combines into one the two 
calls rc and @upr, but sometimes gives unwanted results (see Read Character, above).

CoNVert ────────────────────────────────────────────── 

@cnv «sx#,@cnv(«is##»)» where # and ## are a-z, 0-9, 01-99, or 000-799;
 «sx##,«rc»» has been set; parentheses required

takes a function call read from keyboard (using «rc» command) when a function key is 
pressed and converts it into the corresponding two-character keyboard function/mnemonic.

 Command entry error ─ The key has a character, not a function, assigned to it.

Example:
   «sx40,«rc»»«sx41,@cnv(«is40»)»BC «pv41»
    pressing “y” results in “Command entry error”
    pressing F10 results in XC (execute)
    pressing <left cursor key> results in CL (cursor left)
Note: the XC and CL are the 2-character keyboard functions (or function mnemonics), to be 
distinguished from XC and CL , the 3-character program functions (or function codes).  In 
fact, the @cnv function does the opposite of what is done in Program-Recording (see Chapter 
1, Recording Program Functions).  There when, for example, the F9 key is pressed, the 
keystroke is converted into the embedded function BC.  Here, when an F9 keystroke is pro-
cessed by @cnv, it is converted into the two characters BC that would be used to assign the 
function to a key in a keyboard table.

Other operators ────────────────────────────────────────── 

[See also Operators section of Chapter 8.]
@ Operators
@int save result of calculation as an integer (throw away fractional value, if any)
@abs returns absolute value of a number or calculation, i.e., the numeric result    without 

regard to sign
@dec Convert hexadecimal number to decimal number 

70                                                                        CPG  Chapter 4: XPL Program Calls



@hex Convert decimal number to hexadecimal number
@dat convert date to hexadecimal number
@dts Convert hexadecimal date YYYYMMDD to decimal in format determined by 

default FZ. These two are used to compare two input dates, for instance,  to 
determine which is earlier

@lwr Lower Case function
@num Changes datatype of phrase from string to number (numbers have an  invisible 2-

byte flag, consisting of Ascii 0 followed by Ascii 1, appended to them in memory 
and therefore are 2 bytes longer than their string counterparts)

Values

[There are hundreds of valid values. See Chapter 9, on variables.]
The value command (va) reads and inserts into the file at the cursor location the current value 
of a status variable.  Settings for variables other than defaults are preceded by a $.  The dis-
play (seen only in Page Layout View) can be removed by one stroke of the Backdel key.

Examples:
BC va $paXC displays the current drive and path
BC va tsXC displays the current tab settings

The following is a partial listing of the variables, showing how the value of each can be 
embedded in a program

drive and PAth ────────────────────────────────────────── 

va$pa   «sx#,«va$pa»» where # is a-z, 0-9, 01-99, or 000-799
reports drive and current path

Filename ────────────────────────────────────────────── 

va$fi   «sx#,«va$fi»» where # is a-z, 0-9, 01-99, or 000-799
reports name of file in active window

Filename and path ──────────────────────────────────────── 

va$fp   «sx#,«va$fp»» where # is a-z, 0-9, 01-99, or 000-799
reports filename and drive/path of file in active window

PaGe number ─────────────────────────────────────────── 

va$pg   «sx#,«va$pg»» where # is a-z, 0-9, 01-99, or 000-799
reports current page number (the page-line counter must be on)

CPG  Chapter 4: XPL Program Calls                                                                        71



Line Number ──────────────────────────────────────────── 

va$ln   «sx#,«va$ln»» where # is a-z, 0-9, 01-99, or 000-799
reports current line number (the page-line counter must be on)

MEmory ────────────────────────────────────────────── 

va$me   «sx#,«va$me»» where # is a-z, 0-9, 01-99, or 000-799
reports amount of memory currently free

Window Number ───────────────────────────────────────── 

va$wn   «sx#,«va$wn»» where # is a-z, 0-9, 01-99, or 000-799
reports number of active window

Window Status ────────────────────────────────────────── 

va$ws   «sx#,«va$ws»» where # is a-z, 0-9, 01-99, or 000-799
reports status of current window:
0 = no file open [doesn’t seem to work in NBWin]
1 = file open
2 = directory open  [doesn’t seem to work in NBWin]

File Status ───────────────────────────────────────────── 

va$fs   «sx#,«va$fs»» where # is a-z, 0-9, 01-99, or 000-799
reports which window(s) contain file(s), using sum of values from the following list:

 1 if window 1 contains file
 2 if window 2 contains file
 4 if window 3 contains file
 8 if window 4 contains file
 16 if window 5 contains file
 32 if window 6 contains file
 64 if window 7 contains file
 128 if window 8 contains file
 256 if window 9 contains file

Examples:

If windows 1, 4, and 5 contain files, the value is 25
(1 + 8 + 16).

72                                                                        CPG  Chapter 4: XPL Program Calls



Display Type ──────────────────────────────────────────── 

va$dt   «sx#,«va$dt»» where # is a-z, 0-9, 01-99, or 000-799
reports document display mode in use for current file:

0  Show Codes View
1  Draft View without page breaks
2  Draft View with page breaks
4  Page Layout View [for other types see Allcodes, entry on DT]

ERror Code ──────────────────────────────────────────── 

va$er   «sx#,«va$er»» where # is a-z, 0-9, 01-99, or 000-799
reports code number of error condition

format commands ───────────────────────────────────────── 

vaxx   «sx#,«vaxx»» where # is a-z, 0-9, 01-99, or 000-799
    and xx is format command
reports current setting of format command      [not tested for NBWin]

default settings ─────────────────────────────────────────── 

vaxx   «sx#,«vaxx»» where # is a-z, 0-9, 01-99, or 000-799
    and xx is default setting
reports current setting of default settings (as in NB.DFL).

Miscellaneous Commands

Two commands have, to improve clarity, been discussed earlier (see Error Suppression and 
JuMP above)

Pause ──────────────────────────────────────────────── 

p   BC pXC
causes program to pause for about one second before continuing (actual duration depends on 
hardware configuration).  For longer pause increase the number of XCs

Example:
BC p XC XC XC XC XC XC  ─pauses 6 seconds

Wait ───────────────────────────────────────────────── 

wait  BC waitXC

causes program to finish a background task, such as printing, before continuing
  Without wait, execution continues immediately
Example:

BC print test.docXC BC waitXCBC call test.docXC

CPG  Chapter 4: XPL Program Calls                                                                        73



 ──────────────────────────────────────────────────── 
Suppressing Display 

DX/DO   DX freezes video display for current window
    DO reactivates video display for current window

These are less necessary than they were in NB for DOS. Try a program without them; use if 
needed.

 ──────────────────────────────────────────────────── 
Nested   Programs can invoke other programs. When the second program is 
Programs   finished, control is returned to the first. These subroutines, of course, 
can be saved on disk. The program described previously that reads a character from the key-
board could be turned into such a subroutine.

 ──────────────────────────────────────────────────── 
Interrupting  A program cannot ordinarily be interrupted unless it is expecting 
Programs            some input from the keyboard

 ──────────────────────────────────────────────────── 
Extended             Of the extended phrases available for use in programs (with sv, sx,
Phrases            pv, and is) those in the ranges 00-99 and 000-099 are cleared when a 
program is exited.  Extended phrases above 100 are retained in memory until the end of the 
session, and are available for use in other programs.  Regular phrases (a-z, 1-9) can also be 
used by executing sx. For example, to save the variable recorded on extended phrase 45 as 
regular phrase 5, use:
     «sx5,«is45»»

 ──────────────────────────────────────────────────── 
Numbers &  Numerical values should be converted to strings if they are to be 
Strings  used outside a program. Thus, «sx1,25+45.05» saves the value
    “ 70.05” in phrase 1 for later use with the «pv1» code.

 ──────────────────────────────────────────────────── 

Parentheses  Parentheses must be used around the item(s) operated upon by com-
mands beginning with “@”:

  «if@not(«er»)» ─ will work
  «if@not«er»» ─┐
  «if(@not«er»)»        │─ will not work
  «if@(not«er»)» ─┘

 ──────────────────────────────────────────────────── 

Paragraph Marker             To enter a paragraph marker as part of a search string to be 
Carriage Return                    implemented within a program,
 ‘^R’, e.g.: BXse /^R/Q2.
To have a program insert a paragraph marker into the actual text of a file when the program is 
being run, enter a normal paragraph marker with the Enter key. See also p 77.

74                                                                        CPG  Chapter 4: XPL Program Calls



 ──────────────────────────────────────────────────── 
Programming Error Messages

Too many program calls ─ You created an endless loop (for example, you tried to run 
a program that includes the command to run itself).
Mismatched operands ─ You cannot use string operators with numbers, compare pv# 
with is#, or perform mathematical operations on strings.
Command entry error ─ You have used pv when you should have used is (or vice 
versa), have attempted to perform a string operation on a numerical value or a mathe-
matical operation on a string, or have improperly entered the command or mistyped the 
operator (for example, have only one “=” instead of the pair of “==” symbols).
Label not found ─ The designated label cannot be found.
No «ei» ─ No ei code exists to end an if statement.
Need ID & expression ─ You attempted to enter a program call requiring a phrase- 
key identification, but did not specify either it or the expression to be evaluated.
Repeat w/alphanumeric ─ A label name must be specified.  (This is the same error 
message used for assigning phrases [see “Phrase Libraries” chapter], so the wording is 
tailored for that situation.)

See also useful expansion of this topic in the Appendix,  p 179. 

 ──────────────────────────────────────────────────── 

Notes: Entering and Searching for Commands, Functions and Special Characters

1.  Embedded Commands
Embedded commands are embedded in a file or program as codes contained within command 
brackets (also known as format brackets, double angled brackets or guillemets - this last 
being XyWrite usage).

Searching for Embedded Commands
You can search for embedded codes in Page Layout, Draft or Show Codes view. You can 
find successive instances of one type of code (such as labels, or italics) using only the open-
ing command bracket in the search string.
 BC se /ELB/XC   [where ‘E’ is ASCII 174]
 BC se /EMDIT/XC 
will find the next label or italics code. (After finding most embedded codesyou can move the 
cursor to the left to read the code contents on the prompt line [to see print modes like this, 
you have to uncheck the  box ‘Never show type-style commands’ in Tools, Preferences, Doc-
ument Views].)

Entering embedded commands in programs:
You can do it from the command line—for instance:
 F9 md +boF10 [note space after ‘md’]
 F9 sv 01,textF10
or by writing it directly in Show Codes View, between command brackets:
 «md+bo»
 «sv01,text»

CPG  Chapter 4: XPL Program Calls                                                                        75



You can enter them in upper or lower case, e.g.,
 «sx01,«pv56»»
or
 «SX01,«PV66»»
They will be converted to uppercase the first time you run the program.

2. Functions
Searching for Function Codes
Strike the Pfunc key twice (this puts ‘SE/FN  [square dot] on the command line, with the cur-
sor beside the dot), then type the two characters of the code you’re looking for and strike F10.

Entering function codes in programs:
Functions can be entered in programs by executing
 F9 pfun xx F10 (‘pfun’ and ‘pfunc’ are variant forms of the same command)
or by striking the pfunc key (Ctrl+;). If you are in Codes view, the functions will appear as 
black rectangles with white letters, with a space after the rectangle. The space is part of the 
code; you cannot delete it.

Entering function codes in keyboard tables:
Functions can be entered in keyboard tables as two-letter sequences not separated by com-
mas, e.g.:
 ##=cp,rd   [copy define; erase (rubout) define]
Optionally, you can enter them without commas:
 ##=cprd

Executing functions from the command line
They can be executed from the command line with:
 F9 func xxF10 (where xx is the function code, e.g. ‘func as’ will go to the adjacent 
open window, if any)

You can dedicate a keyboard-table key to this sequence:
 ##=bc,f,u,n,c, ,
The you have only to type the two-letter function code and strike F10 to execute the function.

Or you can save this program in your XPL subdirectory as FUNC.RUN—copy everything 
from the first ‘;*;’ to the second, inclusive. (Change to Codes view to see the whole pro-
gram.)

;*; Program puts 'func + space' on command line, reads from the keyboard the 2 characters 
you type for the function you want to test, and executes.
BC func XC ;*;

Then dedicate a keyboard-table key to this sequence:
 ##=bx,r,u,n, ,f,u,n,c,.,r,u,n,q2
This puts the func command on the command line and executes it as soon as you type the 
two-letter sequence.

76                                                                        CPG  Chapter 4: XPL Program Calls



3. Immediate commands
Immediate commands perform immediate actions on text/files/directories. You can execute 
them from the command line - for instance,
 F9 se /text/ F10
 F9 run apost.run F10

They can be run as, or as part of, programs - where they are executed with the codes BC...XC 
or BX...Q2, e.g.:
 BX run apost.runQ2 

In keyboard files they are executed by bc...xc or bx...q2. Each character of the command must 
be followed by a comma. Eg:
 bx,r,u,n, ,c,:,\,n,b,w,i,n,\,x,p,l,\,a,p,o,s,t,.,r,u,n,q2
Note the space between the command (run) and the argument, and note that the functions (bx 
and q2) are not divided up by commas.

In programs they are executed by functions BC...XC or BX...Q2.

4. Operators
Operators are used mainly in programs. They work within expressions. E.g.:
 «sx02,@upr(«is01»)»
uppercases the text saved in phrase 01. They cannot be entered from the command line, only 
directly in the program in Codes view.

5. Defaults
Permanent defaults are stored in \NBWIN\USERS\DEFAULT\NB.DFL. Many of them can 
be changed permanently or temporarily, either through the Tools, Preferences menu, or 
directly in NB.DFL. You should edit NB.DFL in Show Codes view. Back it up before edit-
ing.

In NB.DFL the form is:
 DF xx=# (where xx is a two- or three- letter code, and numbers or letters follow the 
equals sign).

You can change defaults for an NB session or part of one by issuing the command:
 F9 d xx=# F10
For instance,
 F9 d dt=0 F10
causes all files called after the command is issued to be shown in Show Codes view.

6. Paragraph markers, (loosely known as CRs)
[Strictly speaking, NB’s paragraph marker is a combination of a carriage return character 
and a line feed character—a CrLf. But since single CRs or LFs are vanishingly rare in Nota 
Bene, I use CR to stand for CrLf.]

To put a CR into a search string in a program
To enter a paragraph marker as part of a search string to be implemented within a program, 
use ‘^R’, e.g.:
 BXse /text^R/Q2.

CPG  Chapter 4: XPL Program Calls                                                                        77



In a program, to save a CR in a phrase and compare to one saved to another phrase:
Save an ordinary CR with SV. Then save the second one (e.g., one that you’ve searched for 
and defined) to another phrase, also with SV. Finally, use IF...IS...IS to compare them, as in 
this example, where you search for a separator, define it, save it to phrase 04; then save a CR 
to phrase 05 and compare the two phrases.

 BX se /S/Q2 DF CL DF SV 04XD «SV05,
 »«IF«IS4»==«IS5»»..then do one thing, otherwise do another...

In a program, to insert a CR in a file
To have a program insert a paragraph marker into the actual text of a file when the program is 
being run,
—either enter a normal paragraph marker with the Enter key.
 [But if you use Enter after a programming string beginning with BC,
 it will execute the string. E.g., BC ci /text/more text/↵ executes the change.]
—or do:

 «SV02,↵
»GT «PV02»

In a keyboard file,  to insert a CR in a file:
Use Carriage Return (alone) symbol to enter a regular paragraph marker in text.
Or use the definition on Unshifted 28: ‘FF,&X,C,R’.

In a keyboard file, to insert other types of paragraph marker/line ending in files:
Use:

 Line Feed
Carriage Return (alone)
 Paragraph End (both types)
 Alternate Paragraph only (aka Soft CR)
 Regular Paragraph only

[These are extracted from Find/replace menu by clicking on Red/Blue button to right of Find 
box; clicking on each type of CR; and copy/pasting it into this file. You can do this with any 
of the characters.

7. Command Brackets
To insert in a program,
For opening brackets («) use ASCII 174. For closing brackets (») use ASCII 175.
To input them, hold down Ctrl and Shift keys together, and, while keeping them pressed 
down, type the numerals 174 or 175.

To search for the key definitions of command brackets in a keyboard file:
Search for ASCII 174/175, input as above.

To search for command brackets in a file (from cmd line or Find/Replace dialog):
Just enter them using the command bracket keys, Ctrl+,/Ctrl+.

78                                                                        CPG  Chapter 4: XPL Program Calls



In a program, to search for command brackets:
If you enter opening command brackets in a program in a search string, without matching 
closing  command brackets, you will get an error dialog every time you open the program in 
Page Layout View. You can either ignore this or use ASCII 174 instead.
You can also insert command brackets in programs by putting the string «sv01,E»«sv02,F» 
[E/F=ASCII 174/175] at the top of your program. Then «pv01» will insert an opening com-
mand bracket, and «pv02» a closing one. Note that if you want the «»s in the text, you need to 
include a GT function, or else the string may appear on the command line (depending on 
what is going on at that point in the program).

8. Tabs
In keyboard table or programs:
simply insert a tab character with Unshifted Tab.

9. Tilde
Tilde for command line searches or to input long file name in truncated form:
To reproduce, hold down Ctrl and Shift keys together, and, while keeping them pressed down 
type the numerals 126.

Tilde over letter in text
F9 func MF [go to text, type letter. Press F10, then numerals 7461. Tilde appears over ‘n’.
Cursor must be in file when function is executed, otherwise character appears on command 
line.

CPG  Chapter 4: XPL Program Calls                                                                        79



Programming: Sample Programs

These sample programs were written for NB 4.5 DOS. In NB for Windows most of them will not 
work as written, principally because they use function OV, which is inoperative in NBWin. 
However, most of the code is still valid, and the comments give excellent examples of program-
ming strategy. I recommend them for study. I have crossed out invalid parts.
The programs in sections 7, 8 and 10 are still valid in their entirety.

The following sample programs first show each program approximately as it would look on 
screen, except that the line breaks are arbitrary in these diagrams: the actual programs would be 
continuous unless you use a ;*; string to break them on screen.  In each case the program is fol-
lowed by an explanatory analysis of it.  Where the usage for a program is given as
 USAGE: run <program>
it is always (except where the program is seldom used) more efficient and economical to load 
the program on a key-combination,  or to use one of the other methods of running a program 
described in Chapter 7. [Action line=command line. Expanded mode= Show Codes View. 
Normal Mode=Page Layout View.]

 ────────────────────────────────────────────────────── 
1. Program closing all windows

The program closes and clears all windows.
USAGE: run <program>

«sx11,«vaEP»»«if«pv11»>0»BC d EP=0XC «ei»«sx40,«va$wn»»«lbAbandon»BC OV XabXC BC 
NX «sx41,«va$wn»»«if«pv40»==«pv41»»«glRS1»
«ei»«glAbandon»«lbRS1»BC OV XOV ε1 BC RSXC BC «if@not(«er»)»«glRS1»
«ei»BC «sx40,«va$wn»»OV ε0 BC NX «sx41,«va$wn»»«if«pv40»==«pv41»»«glRS2»
«ei»«glRS1»«lbRS2»«sx44,«va$fs»»«if«pv44»==0»#1 DX AS BC RSXC «ei»
«lbEND_abcl»BC d EP=«pv11»XC BC OV ODO «pr All windows abandoned and closed» «ex1»
 ────────────────────────────────────────────────────── 
«sx11,«vaEP»» —saves value of Error Prompt) as phrase 11
«if«pv11»>0»BC d EP=0XC «ei» —if value of EP is greater than 0, sets default value of 

EP=0 (Erase without prompting); endif
«sx40,«va$wn»» —saves the number of the active window as phrase 40
«lbAbandon» —label Abandon
BC OV XabXC  —clears action line, freezes display for all windows, abandons 

present file
BC NX —clears action line, and goes to next open window
«sx41,«va$wn»» —saves the number of that window as phrase 41
«if«pv40»==«pv41»»«glRS1»«ei» —if  the number of the window is the same as that saved 

on phrase 40, goes to label RS1; endif
«glAbandon» —otherwise goes to label Abandon (and repeats  previous 

operation)
«lbRS1» —label RS1
BC OV X —clears action line, freezes display for all windows suppresses error messages 

and beeps clears current screen

80                                                                       CPG  Chapter 5: Sample XPL Programs



BC «if@not(«er»)»«glRS1»«ei» —clears action line; if no   error, goes to label RS1; endif
BC «sx40,«va$wn»» —otherwise saves the number of the  active window as 

phrase 40
OV ε0 —reactivates error messages and beeps
BC NX —clears action line, and goes to next open window
«sx41,«va$wn»» —saves the number of that window as phrase 41
«if«pv40»==«pv41»»«glRS2»«ei» —if the number of the window is the same as that saved on 

phrase 40,  goes to label RS2; endif
«glRS1» —otherwise goes to label RS1
«lbRS2» —label RS2
«sx44,«va$fs»» —saves as phrase 44 the information on which  windows 

contain files
«if«pv44»==0»#1 DX AS BC RSXC «ei» —if value of phrase 44  is 0 (i.e., if no windows contain 

files), switches to Window 1,freezes screen display,  
switches to adjacent window, clears screen; endif

«lbEND_abcl»     —label End_abcl
BC d EP=«pv11»XC     —restores original BC D EP=0XC value
BC OV O —unfreezes screen display for all windows
DO      —unfreezes current window
«pr All windows abandoned and closed»—reports completion of operation
«ex1»      —ends program

2. Program closing all windows but current one

The program checks each window in turn, clearing the file (if there is one) in it, and closing the 
window, leaving only the current window with its file in it.
USAGE: run <program>

«sx98,«va$wn»»OV X«lbClear»NX «sx99,«va$wn»»«if«is98»==«is99»»OV OGT «prAll 
Windows but this Cleared / Closed »«ex»«ei»OV aBC rs XC «glClear»«ex»

 ────────────────────────────────────────────────────── 

«sx98,«va$wn»» —saves the number of the current window as phrase 98
OV X —turns off display for all windows
«lbClear» —label Clear
NX —goes to next open window
«sx99,«va$wn»» —saves the number of the current window as phrase 99
«if«is98»==«is99»»BC d ep=«pv02»XC OV OGT «prAll Windows but this Cleared / 

Closed»«ex»«ei»
 —if the current window is the same as that  saved to 

phrase 98, restores original EP   setting; turns on display for all 
windows, goes to  text, displays message, and ends pro-
gram; endif

OV  a —otherwise,i.e., if the condition is not satisfied, abandons file on screen
BC rs XC —closes window
«glClear» —goes to label Clear and continues closing windows
«ex» —ends program

CPG  Chapter 5: Sample XPL Programs                                                                       81



3. Program comparing screen file with disk file

This program compares the current screen file with the file (if any) on disk, to check if changes 
have been made since it was last saved.  It does it by calling to screen in an adjacent window the 
disk-copy of the file (if there is one), and looking for the first difference between the two files.  
If it finds none, it reports No Change in the screen file; if it finds any change, it invites you to 
save the screen file to disk.
USAGE: run <program>

BC OV X«sx76,«va$fp»»«sx77,«cp»»OV nw«glCA-F»
«lbCA-F»BC ca «pv76»XC XP «if«er»»BC rsXC OV OBC «pv76» Not on Disk!GT 
«ex»«ei»«glCO»
«lbCO»AS XP TF FD AS BF «sx80,«cp»»OV a BC rsXC «sx78,«cp»»BF 
«sx79,«cp»»«if((«is78»)<(«is79»)!(«is78»)<>(«is80»))»BC jmp «pv77»XC BC WG OV OGT 
«pr File Changed; Save?»«ex»«ei»BC jmp «pv77»XC BC WG OV OGT «pr No Change in 
File»«ex»
 ────────────────────────────────────────────────────── 
BC OV X   —turns off display.  This command differs from DX in that it applies to all 

windows, not just to the one open at the time the function was executed. 
Its complement,OV O, turning display on, again like  DO, comes just 
before the end of the program.

«sx76,«va$fp»» —saves full specification of file (drive/path and name) as 
phrase 76

«sx77,«cp»» —saves current cursor position as phrase 77
OV nw —opens next empty window
«glCA-F» —jumps to label CA-F; this is a device to break up the 

appearance of the program on screen, to make reading 
of it easier. [Still valid, but NBWIN’s ;*; string is easier 
and more elegant.]

«lbCA-F» —label CA-F
BC ca «pv76»XC —calls the file-on-disk by the specification stored as 

phrase 76
XP —changes to Expanded Mode
«if«er»»BC rsXC OVoBC «pv76» Not on Disk!GT «ex»«ei»
 —if there is an error (that file is not on disk),  it clears that 

window, turns on display again,  reports that the file is not on 
disk, and exits; end-if

«glCO» —if no error, goes to label CO
«lbCO» —label CO
AS —switches to the other window (the screen-file)
XP —switches to Expanded Mode
TF —goes to top of file
FD —finds the first difference between the two files
AS BF —switches back to file-on-disk and goes to bottom of file
«sx80,«cp»» —records value of cursor position there
OV a —removes the file-on-disk from screen
BC rsXC —closes window

82                                                                       CPG  Chapter 5: Sample XPL Programs



«sx78,«cp»» —records as phrase 78 value of cursor position at that 
point in screen file (the first point of difference pre-
viously found between the two files)

BF —goes to end of file
«sx79,«cp»» —records as phrase 79 value of cursor position at end of 

file
«if((«is78»)<(«is79») —if the first point of difference  between the two files 

occurs before the end of the screen-file
!(«is78»)<>(«is80»))» —or if the first point of difference is  not the same as the 

cursor position at the  end of the file-on-disk
BC jmp «pv77»XC —then returns to original cursor position
BC WG OV OGT —clears action line, returns to Normal Mode, turns display 

back on, moves cursor to text area
«pr File Changed; Save?»«ex»«ei» —reports that there has been a  change in file since last 

saved,  and exits program; end-if
BC jmp «pv77»XC —otherwise returns to original position
BC WG OV O GT —clears action line, returns to Normal Mode, turns display 

back on, moves cursor to text area
«pr No Change in File»«ex» —reports no change in file since last saved, and exits pro-

gram

4. Program comparing screen file with disk file

This program does the same job as the previous one, but is much shorter, because it makes use 
of one of the many new overlays now available in Nota Bene 4.  In this case the overlay is OV 
ft, which performs just one function: it writes 1 into phrase 99 if the current file has changed 
since it was last saved; otherwise it writes 0.  In this program, if the value is 1, the user is invited 
to save the file to disk; if the value is 0, the program terminates without saving the file.  The 
brevity of the program illustrates the economy in program writing that the new overlays make 
possible
USAGE: run <program>

«sv01,Y»OV ft«if«pv99»==1»BC File changed.  Save?  (Y/N)«glSave»»«ei»BC File not changed 
since last saved«ex»«lbSave»«sx02,«rk»»BC «if«is02»==«is01»»OV sa«prFile 
saved»«ex»«ei»«prFile not saved»«ex»
 ────────────────────────────────────────────────────── 
«sv01,Y» —saves Y (for Yes) to Phrase 01
OV ft —executes the overlay function OV ft
«if«pv99»==1»BC File changed.  Save?  (Y/N)«glSave»»«ei»
 —if the value of Phrase 99 is 1, declares that the file has 

changed since last saved, and asks whether it is to be 
saved now.  Answer to be Y or N.  Goes to label Save; 
endif

BC File not changed since last saved«ex»
 —if the value of Phrase 99 is not 1, declares that file has 

not changed, and terminates program
«lbSave» —label Save

CPG  Chapter 5: Sample XPL Programs                                                                       83



«sx02,«rk»» —reads character typed at keyboard in response to the 
question Save? asked above, and saves it (uppercased) 
to Phrase 02

BC  —clears command line
«if«is02»==«is01»»OV sa«prFile saved»«ex»«ei»
 —if character typed at keyboard is same as that saved in 01 

(i.e., Y), current file is saved to disk, a message that it has 
been saved is displayed, and program terminates; endif

«prFile not saved»«ex» —otherwise (if  key typed was not Y) displays message 
that file has not been saved, and program terminates.

5.Programs Using Incremental Counter

The program illustrates the use of an incremental counter for finding how many occurrences of a 
specified word there are in a file.
USAGE: run <program>,<word>

TF «sv25,0»DX OV ε1«lbW»BC se  WS «pv00»WS  XC «if«er»»TF OV ε2 BC «pv25» occur-
rence(s) of the word '«pv00»'«ex»«ei»«sx25,«pv25»+1»«glW»
 ────────────────────────────────────────────────────── 
TF —goes to top of file
«sv25,0» —saves 0 as phrase 25
DX —freezes screen display
OV ε1 —suppresses error messages and beeps
«lbW» —inserts label W
BC se  WS «pv00»WS  XC —searches for the word entered as argument on the action 

line
«if«er»»TF OV ε2BC «pv25» occurrence(s) of the word '«pv00»'«ex»«ei»
 —if error (word not found), goes to top of file, unfreeezes 

screen display, turns off error suppression, reports the num-
ber of occurrences of the word in the file, and ends pro-
gram; endif

«sx25,«pv25»+1» —otherwise, increments by 1 the number (initially 0) 
saved as phrase 25

«glW» —goes to label W (and resumes search for next occurrence 
of the word)

6.A more elaborate version of previous program.  It reports the frequency either of a word or 
of a string of characters, prompting you to choose which it is that you want.
USAGE: run <program>,<word>

TF «sv25,0»«sv01,W»«prStrike W for Word, S for String»«sx02,«rk»»DX OV ε1 
«if@not(«is02»==«is01»)»«glS»
«ei»«lbW»BC se  WS «pv00»WS  XC «if«er»»TF OV ε2BC «pv25» occurrence(s) of the word 
‘«pv00»’«ex»«ei»«sx25,«pv25»+1»«glW»

84                                                                       CPG  Chapter 5: Sample XPL Programs



«lbS»BC se  «pv00» XC «if«er»»TF OV ε2BC «pv25» occurrence(s) of the string 
‘«pv00»’«ex»«ei»«sx25,«pv25»+1»«glS»
 ────────────────────────────────────────────────────── 
TF —goes to top of file
«sv25,0» —saves 0 as phrase 25
«sv01,W» —saves W as phrase 01
«prStrike W for Word, S for String» —prompts to enter W or S
«sx02,«rk»» —saves (in uppercase) key struck
DX —freezes screen display
OV ε1 —suppresses error messages and beeps
«if@not(«is02»==«is01»)»«glS»«ei» —if key struck is not W (i.e., if it is S), goes to label S; 

endif
«lbW» —labelW
BC se  WS «pv00»WS  XC —otherwise, searches for the word entered as argument on 

action line
«if«er»»TF OV ε2BC «pv25» occurrence(s) of the word ‘«pv00»’«ex»«ei»
 —if error (word not found), goes to top of file, unfreezes 

screen display, turns off error suppression, reports number 
of occurrences of the word, and ends program; endif

«sx25,«pv25»+1» —otherwise, increments by 1 the number (initially 0) 
saved as phrase 25

«glW» —goes to label W (and resumes search for next occurrence 
of the word)

«lbS» —label S (see «glS» above)
BC se  «pv00» XC —searches for string saved as argument on action line
«if«er»»TF OV ε2BC «pv25» occurrence(s) of the string ‘«pv00»’«ex»«ei»
 —if error (string not found), goes to top of file, unfreezes 

screen display, turns off error suppression, reports number 
of occurrences of the string, and ends program: endif

«sx25,«pv25»+1» —otherwise, increments by 1 the number (initially 0) 
saved as phrase 25

«glS» —goes to label S (and resumes search for next occurrence 
of the string)

7. Program using parsing to execute a command a specified number of times

The program uses xs.  It executes the specified command the specified number of times, e.g., 
find the 24th occurrence of a specified word, or print 10 copies of this file.
USAGE: run <program>,#*<command>

E.g. to find the 15th footnote in the screen file; the screen file must first be changed into 
Expanded mode.
run <program>,15*sea  FN 

«sv01,*»«xs00,01,02,03,04»«sx05,0»«lbexe»BC «pv04»XC 
«if«er»»«ex»«ei»«sx05,«pv05»+1»«if«pv05»==«pv02»»«ex»«ei»«glexe»

CPG  Chapter 5: Sample XPL Programs                                                                       85



 ────────────────────────────────────────────────────── 
«sv01,*» —saves asterisk as phrase 01.  The asterisk will be the 

parsing operator in the parsing operation
«xs00,01,02,03,04» —parses the argument on the command line, i.e., the string 

‘15*sea  FN ’  The parsing saves ‘15*sea  FN ’ as 
phrase 00,’15’ as phrase 02, ‘*’ as phrase 03, and ‘sea 
 FN ’ as phrase 04

«sx05,0» —saves 0 as phrase 05
«lbexe» —label exe
BC «pv04»XC —executes the command sea  FN 
«if«er»»«ex»«ei» —if error (no more notes left), ends program; endif
«sx05,«pv05»+1» —otherwise, increments by 1 the number (initially 0) 

saved as phrase 05
«if«pv05»==«pv02»»«ex»«ei» —if phrase 05 equals phrase 02, i.e., if it is 15, ends pro-

gram; endif
«glexe» —otherwise (i.e., if neither of preceding conditionals is 

true) goes to label exe, and searches for the next foot-
note

8. Program using subroutine

The following is an example of an ‘su’ in action.  The «su#,...», say  «su105,...», can be stored in 
memory with
run <name of ‘su’s file>.  Then it can be embedded in any program with ‘pv105’, where it will 
be executed.  This can be illustrated with a simple «rc» loop.

This is a loop that enters into the text each stroke made from the keyboard until * is struck, 
which leads to exit from program:
      «sv20,*»«lbChain»«sx25,«rc»»«if«is25»==«is20»»«ex»ei»
      «pv25»«glChain»
It can be saved in an ‘su’, like this:
      «su105,«sv20,*»«lbChain»«sx25,«rc»»«if«is25» ==«is20»»«ex»«ei»«pv25»«glChain»
      »
Note: there must be a paragraph marker immediately before the «su»’s closing command 
bracket.

This subroutine can be embedded at the start of a program in which you are going to want inter-
action from the keyboard.  At any point in the program where you want a pause for keyboard 
entry embed the command «pv105».  The program will then pause for you to make as many key-
stroke entries as you want; when you have finished strike *, and the program will resume.  Note 
that to break out of the subroutine and return to the main program «ex» must be used; if «ex1» 
were used instead, the entire program would be ended.

Making any such subroutine into a program of its own (called, say INTER.RUN) and running it  
(say with the line:
                         BC run inter.run

86                                                                       CPG  Chapter 5: Sample XPL Programs



in NBSTART.INT) stores it in memory.  That means that the subroutine itself does not have to 
be embedded in any program in which you want to use it.  All you have to do is to embed the 
«pv105» in the place(s) where it is needed to cause the program to pause for keyboard entries.

9. A complete (and possible lengthy) program can be stored as a subroutine on an extended 
phrase, and subsequently executed from a regular phrase key, without taking up more than a 
fragment of the limited memory available for the storage of regular phrases.  If a program of any 
length is stored in a subroutine with «su105,<program>», then with Alt-F3 «pv105» can be put 
on a phrase key and saved as an XPL program.  Alternatively it can be loaded, by creating a pro-
gram named, say, PV105, and consisting just of the one command «pv105»; that second pro-
gram can then be loaded on an Alt-key, say S, with the command ldpm PV105,s.  Then any time 
that Alt-S is struck the full program will be executed.  This makes the running of a program 
much faster, because no access to disk is involved; on the other hand, some general memory is 
kept locked up by the storing of the subroutine/program on an extended phrase.  The user must 
decide in any particular case which is the most efficient and economical method to follow.

10. Load whole phrase library on one key

USAGE: run <program>+letter/numeral of phrase key wanted.
In this case the only efficient way to run the program is by assigning it to a key-combination.  
The program does exactly the same job as using the ALT key+a letter/numeral to insert a phrase 
or command from a phrase library; and it does the job no better.  The advantage of using it 
instead of the Alt+key method is that it releases the 35 keys in the ALT table of NB.KBD that 
are by default defined as
@x           ;where x is either a letter or a numeral.  As those keys are no longer needed as phrase 
keys, they all become available for redefinition by the user.  The program makes use of the fact 
that all phrases are entered by the function codes @A-@Z, and @1-@9.  It does not affect the 
use of Alt+F3 for displaying and editing phrase keys.

Closely similar programs can be written using, instead of ‘func @’:
   (1) ‘func &’ for running programs loaded on ampersand phrases;
   (2) ‘func #’ for moving to a specific window.

NB: In NBWin this job can be done better by defining a key as: ##=SG. See p. 157.

BC func @«prEnter A-Z or 1-9; <Esc> to cancel»«sx01,«rc»»«pv01»GT XC «ex»
 ────────────────────────────────────────────────────── 
BC func @ —clears action line, enters beginning of function com-

mand, and waits for you to enter the correct 
alphanumerical character

«prEnter A-Z or 1-9; <Esc> to cancel»—prompts for character
«sx01,«rc»»«pv01»GT XC —saves character entered, inserts it on action line, goes to 

text area and executes function command
«ex» —exit program

CPG  Chapter 5: Sample XPL Programs                                                                       87



Programming: Writing Programs

1. Planning There can be no hard and fast ‘how to’ rules, or infallible recipes, about meth-
ods for writing programs.  There are too many factors involved: how experienced you are; how 
good you are at keeping in your head at one time a number of phrase values, of ‘if’s, of ‘go to 
labels’, etc.; how long and intricate the program itself is going to have to be; and so on.  The 
nearest thing to a rule perhaps is that, except in the case of a very short program, the way to start 
writing a program is not to start by writing it: it is better to start by thinking about it, jotting 
down notes on paper, and planning the general flow of the program, so far as you can, before 
getting down to the details.

If the program is going to be short, proceeding in a single linear sequence, with no branches or 
loops, then you can go straight at it.  For example, suppose you required a program that would 
tell you, whenever you wanted, what the present location of the cursor is in your current file, you 
could write that out without previous preparation:

«sx01,«cp»»BC Cursor at «pv01» bytes from Top of File«ex»

That is easy, because it is so short, and because the «ex», marking the end of the program, comes 
as the final entry.  But that does not often happen: the program may have more than one «ex» in 
it; and they may be dotted over the program, anywhere but as the final entry.

2. Building a Program When you do start creating a program, remember that it 
is not necessary, and often not advisable, to compose it in exactly the order which it is going to 
bear when finished: it is usually better to build it up from its central aim, inserting the necessary 
additions stage by stage.  As an illustration, take the case of a program that you might want to 
create for embedding paragraph markers at the end of every line in a file.  When you are writing 
a file, such as a letter, to send by email, you may want every line to have a carriage return at the 
end of it. You can, when writing the file in Nota Bene, make a point of hitting the <Enter> key 
at the end of each line; but that is not easy to remember, and gives you extra work if you make 
any revisions in the file. It is much easier to write the file in the ordinary Nota Bene way, and 
then put the paragraph markers in afterwards; it is easier still if you have created a program to do 
that for you.

The first thing you will need in the program are formatting codes to set the Point size and page 
width settings.  SZ11PT and PW70DI would be generally suitable, so the program can start by 
going to the Top of the File, and embedding those codes:

TF «SZ11PT»«PW70DI»
The program will run better if you have it save those codes to a phrase, and then insert the 
phrase at the right place.

«sv07,«SZ11PT»«PW70DI»»TF «gt07»
You also need to ensure that the file is in Page Layout View, by inserting a WZ function:
 «sv07,«SZ11PT»«PW70DI»»WZ TF «gt07»
Then you want the program to go to the end of the line, and replace the space that is there with a 
paragraph marker, as in:

LE CR BD ↵

88                                                                      CPG  Chapter 6: Writing XPL Programs



That goes to the end of the line (LE), moves the cursor one place right (CR), backdeletes the 
space, and inserts a paragraph marker (↵).  To insert a paragraph marker [also confusingly 
known as a carriage return or CR] into a program to be put into a file (i.e., not to be used as 
part of a search string), you simply strike the <Enter> key.

The program, so far, looks like this:
«sv07,«SZ11PT»«PW70DI»»WZ TF «gt07»LE CR BD ↵

At this stage the program takes care of only one line.  You have to elaborate it so that it will do 
two more things:
  (i) repeat the process for succeeding lines in the file;
  (ii) recognize when it reaches the end of the file, so that it does not try endlessly to 
continue repeating (i)’s process of replacing end-of-line spaces with markers.  (i) is taken care of 
by adding a «gl...» at the end of the existing program, and adding a matching «lb...» to the pro-
gram in the right place to repeat for succeeding lines the operation of replacing space with 
marker: the place for the «lb...» is immediately before LE.  The program would now become 
this:

«sv07,«SZ11PT»«PW70DI»»WZ TF «gt07»«lbLE»LE CR BD ↵
«glLE»

Now the program will work right through your file replacing end-of-line spaces with paragraph 
markers.  But it needs to be given some way (ii) of recognizing when there are no more lines left 
to alter.

(ii) can be achieved by using the fact that when the cursor reaches the end of a file, the instruc-
tion to move it one place to the right has no effect. So at the end of the file this code, saving the 
cursor position (cp) to phrase 05, moving one place to the right and saving the cp again::
  «sx05,«cp»»CR «sx06,«cp»»
will leave the values of «is05» and «is06» identical.  The program will take the values of the two 
«cp»s, and be told to do one thing if they are identical, a different thing if they are not.  After 
«sx05,«cp»»CR «sx06,«cp»» instructions must be added about ending the program if the two 
values are identical.  The instructions would be: to go back to the top of the file and remove the 
two formatting codes that had been inserted there at the outset, and to exit the program:
 «if«is05»==«is06»»TF RC RC RC «ex»«ei»
This new section of code must be inserted in the existing program immediately after LE CR , 
making the program now read:

«sv07,«SZ11PT»«PW70DI»»WZ TF «gt07»«lbLE»LE CR «sx05,«cp»»CR 
«sx06,«cp»»«if«is05»==«is06»»TF RC RC «ex»«ei»CL BD ↵
«glLE»

It is necessary to insert a CL immediately before the BD, to offset the CR between the two calls 
saving the «cp»s to their respective phrases.

The program is now complete, but it can be improved by
  (i) freezing the video while it is being executed; and
  (ii) inserting a message at the end to report that its execution has been completed. 
(i) is achieved by inserting DX to turn the video off and DO to turn it on again; and (ii) by 
inserting a prompt message «prConversion complete» immediately before the «ex».  It would 
also be helpful to the user if you inserted a «prWorking...» code near the start of the program, 
which will be displayed throughout the running of the program [hardly necessary in NBWin on a 

CPG  Chapter 6: Writing XPL Programs                                                                      89



reasonably fast computer—one running Win XP]; but the DX needs to be moved so that the 
prompt message will not be made invisible; the eventual result should be:
Program to add line ends to emails

«sv07,«SZ11PT»«PW70DI»»WZ «prWorking...»DX TF «gt07»«lbLE»LE CR 
«sx05,«cp»»CR «sx06,«cp»»«if«is05»==«is06»»TF RC RC DO «prConversion com-
plete»«ex»«ei»CL BD ↵
«glLE»

If you use smart quotes (curly quotes), you may want to change them  to straight quotes for send-
ing in emails. This bit of code does it:
 BX ci /’/'/Q2 BX ci /‘/'/Q2
You can insert it before the first TF code.But you must move the DX code to after the change 
string, which will not work with DX before it. Suppress the ‘Cannot find item’ error message by 
putting BC es 1XC at the beginning of the program.

BC es 1XC «sv07,«SZ11PT»«PW70DI»»WZ «prWorking...»TF BX ci /’/'/Q2 BX ci 
/‘/'/Q2 DX «gt07»«lbLE»LE CR «sx05,«cp»»CR «sx06,«cp»»«if«is05»==«is06»»TF RC 
RC DO «prConversion complete»«ex»«ei»CL BD ↵
«glLE»

3.Comments: Breaking Programs into Lines  Programs in other programming lan-
guages are made up of distinct lines of code, sometimes with blocks of code indented from 
preceding and succeeding lines, for the sake of clarity.  An XPL program, on the other hand, is 
one continuous line from beginning to end (like a single paragraph in Nota Bene text); and that 
can make it difficult to pick out the trees from the wood.  Even a short program like the one 
above would be easier to read, if set out like this:

«sv07,«SZ11PT»«PW70DI»»WZ «prWorking...»DX TF «gt07»

«lbLE»LE CR «sx05,«cp»»CR «sx06,«cp»»

«if«is05»==«is06»»TF RC RC RC DO «prConversion complete»«ex»«ei»

CL BD «glLE»

To do this, use the commenting string ‘;*;’:

 «sv07,«SZ11PT»«PW70DI»»«prWorking...»DX TF «gt07»;*;
 ;*;
 «lbLE»LE CR «sx05,«cp»»CR «sx06,«cp»»«gl2»;*;
 ;*;
 «lb2»«if«is05»==«is06»»TF RC RC RC DO «prConversion complete»«ex»«ei»«gl3»;*;
 ;*;
 «lb3»«CL BD ↵
 «glLE»

Any line or para that begins with ;*; is a comment. It can be many lines long; nothing will be 
executed until the line after the first paragraph mark that follows the ;*;.
You can insert nearly-blank lines by putting a commenting string on a line on its own.
You can break a line of code anywhere with a commenting string (except in the middle of an 

90                                                                      CPG  Chapter 6: Writing XPL Programs



expression, «GT;*;
07» will not do).
When writing a new program it is a good idea to use a lot of these commenting separators. It 
helps to keep clear the various elements of the program; and it helps to keep you on track while 
doing the writing.  It is also a good idea to include comments describing what each element is 
doing. Once the writing has been done, and the testing successfully completed, you can remove 
as many of them  as seems suitable.  But there is much to be said for keeping them, and, in par-
ticular, in keeping your notes on what is happening in that section of the program.  That can be a 
help when you are revising or expanding the program, and it can be very useful to any other user 
with whom you share the program.

4. Embedding Codes in Programs  In Chapter 5 the two ways of embedding function 
codes (Recording Mode, and the PFUNC Command) were described; and the question arises 
whether one is to be preferred to the other.  The answer is that each has its pros and cons, and 
that you should exercise judgement in deciding which to use at a given time.  The advantage of 
Recording Mode is that you can enter program functions into a file without knowing what the 
codes for the functions are.  Striking Ctrl+Shift+F10 will put the CC code into the file; striking 
unshifted F10 will input XC. But with each new version of NB for Windows there are fewer 
keys that hold simple two-character functions that can be entered in a program like this, and 
more and more keys which, if pressed in Recording Mode, put code like this into the program: 
&X BC —this is the definition on unshifted F9; or [U &X BDU] —this is on the Backspace 
key. These codes will not work; you will have to hunt for the code you want in Chapter 8 (or the 
shorter function list in Chapter 2).  Recording Mode has the further disadvantage that if you hit 
the wrong key, you may reach for the backdelete key—which will input  [U &X BDU]  rather 
than backdeleting your mistake. It’s easy to lose track and have to start from scratch.
So it is almost always better to use pfunc. The disadvantage of pfunc is that, in order to embed 
a function code, you need to know what the code is (which you do not with the Recording Mode 
method); or, if you do not know it, you have to look it up in the lists of codes in Chapter 8, or 
the table of Keyboard Functions inChapter 2.
With this method, the function is embedded as soon as you strike the Ctrl+; combination and 
type the two-letter mnemonic.
As you become more familiar with the vocabulary of function codes, you will find the pfunc 
method the more economical.  And you can, in fact, have the best of both worlds by always writ-
ing and editing a program with pfunc, and switching to Recording mode just for those functions 
the mnemonic letters for which you do not know, or do not remember. Even if it inputs non-
functional codes like &X BC or [U &X BDU], they often contain a reminder of what the the 
two- character code is—BC and BD in these instances.

Program to make PFUNC embed codes in file
In fact there is a simpler and more economical way of getting pfunc to embed function codes in 
a file, which does not involve distracting your attention by moving up to the command line and 
entering the two mnemonic characters there.  Write for yourself this very short program:

GT YD DF CL CL DF «sv01»RD BC pfunc «pv01»XC GT «ex»

CPG  Chapter 6: Writing XPL Programs                                                                      91



Save the program as, say, PFUNC.RUN, and load it on an Alt-key, for example on Alt-F.  Then, 
whenever you want to embed a function code into a file, type into the file the two letters of the 
mnemonic, and strike Alt-F.  That will replace the two letters you have just typed with the cor-
responding function code.  For example, typing the two letters bc and striking Alt-F will replace 
the bc with BC .

Replacement Dictionary Another, even more economical method, which is to be recommended 
on other grounds (see next section), is to create a personal abbreviation dictionary (called, say, 
PROGRAM.SPL or XPL.SPL), and, with it loaded, use Automatic replacement.  If the diction-
ary contains the line

bc BC
then any time you type bc and hit the Ctrl key, the two letters will automatically be replaced by 
the BC function code. [NB: Use the Ctrl key, not the space bar, which would insert an extra 
space into your program.]
You can keep XPL.SPL open on one side of your NB screen while programming to remind 
yourself of what abbreviations to use.

Phrase library  You can also save codes and program segments to a phrase library, perhaps 
named PROGRAM.LIB or XPL.LIB, though this has two disadvantages: you cannot keep the 
library open as an aide-memoire; and you are limited to 36 phrases (A-Z and 1-0).

5. Embedding Program Calls in Programs This cannot be done by the use of 
Recording Mode; calls must be entered as if they were text.  All program calls begin and end 
with a command bracket, and consequently in Page Layout View appear as undifferentiated 
codes; Codes View should therefore always be used when writing programs.  Opening and clos-
ing command brackets can then be inserted with Ctrl+< and Ctrl+> [keys 51 and 52] respec-
tively; if you try to strike the former key-combination when in Page Layout View, the opening 
bracket will be entered, but you will get an error message, and will not be able to continue until 
you delete the bracket .

Replacement Dictionary / Phrase Library - With calls as with function codes, it pays to set up 
an abbreviation spell file and/or phrase library (the same one can be used for both), and to  
include in it most of the common, and certainly the more complicated, calls.  Wherever a call 
requires a complementary call, e.g. «if» requiring «ei», it is worth putting both of the pair on one 
abbreviation key, so that both will be entered together, with less risk of your forgetting to supply 
the complementary one.  The second member of the pair must then be moved to its correct place 
in the program.  Abbreviations such as

ife «if»...«ei»
ifr «if«er»»...«ei»
ifx «if»...«ex»«ei»

can save both time and mistakes.
As every «gl..» requires an «lb..», you might think it worth putting both into a single abbrevia-
tion.  This also applies to commands and codes requiring complements.  For example you can 
freeze the video display during the running of a program by inserting DX; but, if you do not 
insert a DO somewhere before the «ex» call (possibly more than one) occurs, then, when you 
leave the program, although the computer will continue to work, it will look as if it had locked 
up.  The abbreviation

dx DX DO

92                                                                      CPG  Chapter 6: Writing XPL Programs



Then there are routines that you may need to use quite often, but do not want to have to recreate 
each time you want them.  For example, sometimes a program will give the user a choice, 
requiring the response of Y or N to a question.  The expansion of  ‘rc’ in the next line will do 
that [Note: the ‘rc’ at the beginning of the line is the abbreviation to be expanded, not part of  
the program segment.]

Yes-or-no routine
rc «sv01,Y»«prMessage....Answer Y/N»«sx02,@UPR(«rc»)»«if«is02»==«is01»»do such-
and-such«ei»otherwise do so-and-so.

The expansion of ‘ks’ below provides for every keystroke entered by the user being entered into 
a file until F10 is struck, whereupon the program ends, or does whatever else you substitute for 
«ex»

User keystroke routine
ks «sv10,XC »«lbRec»«sx51,«rc»»«if«is51»==«is10»»«ex»«ei»«pv51»«glRec»

The compiling of such a dictionary could go on indefinitely, but it is best to limit it toabbrevia-
tions and expansions that you will use regularly; otherwise you spend as much time hunting for 
them in the .SPL file as it would take to type them from scratch.  But one further particular one 
is worth mentioning.

Searching for command brackets
In a number of programs that you write you will have occasion to include search commands of 
the form BC se \...\XC (or BX se \...\Q2); and sometimes the string to be searched for will 
include one or other of « and », the two command brackets. To insert them in a search string in a 
program, hold down Ctrl+Shift and, while holding the keys down, strike 174 for opening com-
mand brackets or 175 for closing ones.

6. Setting Defaults  In some programs you may have occasion to set some 
new defaults, for convenience in the running of the program.  But you will not want those 
defaults to continue to hold after the programs has been run.  For example, you want a program 
that you are writing to work without prompting the user for confirmation before erasing a file; 
but you want a reversion to normal defaults once the program has finished.  The code BC d 
ep=0XC (‘ep’ is Error Prompt) will prevent such prompts during the program.  To get back to 
the normal default the program must first establish what the value of that is, and then at the end 
restore it.  The call
«sx01,«vaep»»
will record the user’s current setting for Erase Prompts. Itshould be inserted at, or very close to, 
the beginning of the program; then insert BC d ep=0XC to change it to 0 for the running of the 
program; then, before the program’s «ex» call (or before each of them, if there are several 
«ex»s), insert BC d ep=«pv01»XC ,to restore the original setting.  The corresponding operation 
should be performed for any other default settings that are made during a program.

7. Writing for public use If you are writing a program that is to be, or that may 
be, used by somebody other than yourself, you should always, if the program uses or assumes a 
certain default setting, have the program perform operations of the above kind.  You cannot 
assume that other users are using the same defaults as you; if you do, and if they are not, the pro-
gram, although it works for you, will not work for them.

CPG  Chapter 6: Writing XPL Programs                                                                      93



8. User Options  Sometimes a program will give the user an option, as in 
‘Press * to call file; press / to finish’.  The program must then specify what is to be done if the 
first option is chosen, and what if the second is chosen.  In the case of the User keystroke routine 
above, you can enter:
 «sv12,*»«sv14,/»
followed later by

«sx11,«rc»»«pv11»«if«is11»==«is12»»do one thing«ei»«if«is11»==«is14»»do something 
else«ei»

But where, as in this case, there are only two options, it is actually unnecessary to specify the 
second, because the program will automatically take that, if the first is not chosen.  In the above, 
«sv14,/» and «if«is11»==«is14»» can be omitted:
 «sv12,*»«sx11,«rc»»«pv11»«if«is11»==«is12»»do one thing«ei»otherwise do something 
else

Multiple options need to be dealt with differently.  Suppose the program is to give the user 
choice of one of six options, each marked by one of the letters ‘ABCDEF’, then it must provide 
for the specific letter that is chosen, and it must also provide for the case where none of them is 
chosen.  The best way to handle that is to introduce the string operator î, which is used to 
determine whether one character/string is contained in another string, and, if so,  which position 
in that string it occupies.
In the string ABCDEF A occupies position 0, B occupies 1, and so on.  If the string is saved to 
Phrase 03 with «sv03,ABCDEF», and if the key struck (character entered) by the user is saved to 
Phrase 01 with «sx01,@UPR(«rc»)», then «sx02,«is01»î«is03»» will record as Phrase 02 the 
position in ABCDEF of the character entered by the user.  The program must then specify what 
is to be done if the character entered is not one of the letters ABCDEF, which it does with 
«if«pv02»<0», (if the position that it occupies is less than 0), i.e., if it does not occupy any posi-
tion in the string ABCDEF.  If it does occupy a position in the string, the program must then 
specify what must be done for each possible position.
There are various ways of doing that, depending on the length of the string and on the rest of the 
program.  But the simplest way in this case is to specify an «if» for each of the six positions; let 
us suppose it directs the program to one or other of six labels, each bearing the respective letter 
as its name:
«if«pv02»==0»«glA»«ei»«if«pv02»==1»«glB»«ei»«if«pv02»==2»«glC»«ei», etc.  This is a a case 
where the program would be much easier to read if each «if» was on a line of its own, which can 
be achieved by ending each line with ;*;.

;*;
«if«pv02»==0»«glA»«ei»;*;
«if«pv02»==1»«glB»«ei»;*;
«if«pv02»==2»«glC»«ei»;*;
  and so on

9. Suppressing Video Display        The same consideration applies to suppressing 
video display.  In most completed programs you will want to embed DX and DO in the right 
places.  They speed up the execution of the program, and they save the screen display from 
doing a frantic St. Vitus’s dance.  But it is best not to insert them until the last minute: it is help-
ful, when trying out the program, to see what is actually happening during its various stages.

94                                                                      CPG  Chapter 6: Writing XPL Programs



10.  Suppressing Error Messages Some programs will, if undoctored, send error messages 
when they are being executed, and make the computer beep; that can be distracting and irritating 
to the user.  This regularly happens, for example, if the program involves a ‘search’ command: 
when no further instances of the string being looked for can be found, the command produces a 
beep and a ‘Not found’ message.  This can be avoided by embedding at the start of the program, 
or near it, an Error Suppression command, BC es 1XC. [In NB 4 it was necessary to reactivate 
bell and error messages with the command, BC es 0XC. This is not necessary in NB for 
Windows.]. But it is advisable not to insert the  command into the program until after it has been 
written and satisfactorily tested.  If you put it in earlier, and if you commit an error in the course 
of writing the program, you will receive no warning of it.  It can sometimes be difficult to spot 
just where in a program you have entered some wrong code; and the error messages are some-
times so general that they do not pinpoint the error: ‘Command entry error’, for example, covers 
a multitude of possible sins.  But they are better than nothing; and nothing is what you will get, 
if you work with Error Suppression activated.

11. Working Messages One price that has to be paid for suppressing video display is that dur-
ing the execution of the program nothing whatever appears to be happening.  This can be dis-
concerting for the user who, if unfamiliar with the program, may start to wonder whether the 
computer has locked up.  For this reason, it is worth including in the program a message to be 
shown on the prompt line, to reassure the user that the program is running. «prWorking...» is 
sufficient.  Unfortunately, that does not always work: any BC that occurs later in the program 
clears not only the command line, but the prompt line too, and will wipe out the ‘Working...’ 
message.  There are various ploys that you can use, such as inserting another prompt after the 
code that wipes out the previous message, like «prStill Working...».  But you must remember to 
combine that with code to turn screen display on before the prompt/message, and another to turn 
it off again after the message.  Something like DO «prStill Working...»DX may do the trick; you 
must be prepared for a certain amount of trial-and-error experimentation.

With any but the shortest program, it is a good idea to include a message reporting that it has 
done its job.  It can be as short as the all-purpose ‘Done’ that Nota Bene commonly uses, but a 
more detailed message such as ‘Conversion completed’, ‘File saved to C and B’ is more 
informative.  The message must be embedded in the program immediately before the «ex» (or 
«ex»s), and must come after the DO code, if there is one.  It can be displayed on the command 
line, with BC Conversion completed, or on the prompt line with «prConversion completed», 
whichever is more convenient.

12. Comments  For any program but the simplest and shortest it is 
worth including comments that will help the user to understand and follow the program.  Even 
the author of a program can have difficulty, when he looks at it a month or so after writing it, in 
making it all out.  Comments may occur:
  (i) before the beginning of the program;
  (ii) in the course of the program;
  (iii) after the end of the program;
or any combination of the three. See ‘Breaking Programs into Lines’, p  90above

CPG  Chapter 6: Writing XPL Programs                                                                      95



13. Pruning   It often happens that, having written a program, one revises it (possibly 
more than once), producing one modified version after another.  And it can further happen that 
some no longer needed function codes and/or program calls from an earlier version survive into 
a later one without actually inhibiting or interfering with the execution of the later version.  
These vestigial elements do no harm, but they do no good either, and can make the final version 
harder to read─especially when you come back to it after a long interval, when none of it looks 
as familiar as it once did.  It is always worth checking through the text of a program, if it is the 
last of several versions, to make sure there is nothing in it that is no longer needed.

14. Labels  Finally, it cannot be overemphasised that scrupulous care must be taken with 
labels.  A «gl...» call and its corresponding «lb...» call must exactly match each other; if they do 
not, the first will not find the second, and the program will not run correctly.  «glSTART» will 
not find «lbStart» or «lbstart», only «lbSTART».  And secondly, every label in a program must 
be unique.  For example, if there are two occurrences in a program of «lbCall», then «glCall» 
will always find the first of them, never the second, with the result that the program again will 
not run correctly.

15. Naming programs
You can name programs anything. If you want to run them from the command line, the name 
should be in 8+3 form (no more than eight characters before the (optional) extension, no more 
than 3 after). NB users often name their programs with an extension of .RUN, but it’s not neces-
sary. When I am writing temporary programs, I save them with a single-letter filename, e.g., R 
or T, because it is quicker to test a single-letter file than an 8+3 one: ‘run t’ versus ‘run temp-
file.run’.

You don’t need to type the path name if you are working in the same folder as the program, but 
you should really keep your programs in a folder named c:\nbwin\xpl. In this case, if you are in 
another folder, you need to type the full path to the xpl folder—unless you put the xpl folder in 
your path (Control Panel, System Properties, Advanced, Environment Variables, System Vari-
ables. Highlight Path in the window, click Edit, and add c:\nbwin\xpl).

If you have downloaded and installed the XYWWWEB.U2 file, you can add programs  to the 
bottom of the file and run them with your U2 help key.

16. When programs don’t work Especially when you are first learning to write pro-
grams, it can be helpful to put each piece of code on a line of its own, with a description of what 
you mean it to do:
 ;*; Save type size and page width in phrase 07.
 «sv07,«SZ11PT»«PW70DI»»;*;
 ;*; Put a Working prompt on the prompt line.
 «prWorking...»;*;
 ;*; Turn off the display
 DX ;*;
 ;*; Go to Top of File
 TF ;*;
 ;*; Put phrase 07 [type size & page width] at top of file.
 «gt07»;*;

96                                                                      CPG  Chapter 6: Writing XPL Programs



If the program doesn’t work, you can put a temporary end-program code—«EX»—at the end of 
a suitable line, save the program and run it to see whether it works up to that point. For instance, 
you could put an «EX» after «gt07», so that you can inspect your file in Codes View and check 
whether your formatting codes are being inserted at the top:
 ;*; Go to Top of File
 «gt07»«EX»;*;
This can be helpful if troubleshooting a long program. Remember to remove the temporary 
«EX».

Before you first run a program, and after every change, switch briefly to Page Layout View. If 
you have a command bracket too many, or too few, you’ll get a warning dialog (unless you turn 
it off with Help, Action Tips—but it is best left on). If you simply run the program, it will at best 
insert the bit of code in your file, e.g., «gt07, and at worst make the program, and maybe NB 
itself, choke.

It can also be helpful to change into Draft View with Shift F9, then do Shift F10 repeatedly to 
cycle through the Draft View display options.

17. Default MB  Default MB is set in Tools, Preferences, Prompts, under Errors, where 
you have a choice of displaying error messages on the status line (df MB=0) or in message 
boxes (default MB=1). For running programs, default MB must be set to 0.  Otherwise the con-
tents will display in a Windows message box which will persist on the screen until you press 
Enter or click on "OK".  This causes problems with programs that loop repeatedly through 
PRompt statements.

If you want to have default MB set to 1 most of the time, you should put a line at the top of your 
programs to change it to 0:
 BX d MB=0Q2
then change it back just before the final «EX» with
 BX d MB=0Q2

If the program goes into a loop Sometimes a program you are testing will go into an 
endless loop, probably repeating one or more error messages on the prompt line. Occasionally 
one can break out of the loop by pressing the Esc key repeatedly, but this is very seldom pos-
sible. You will have to close NB forcibly. To do so, right-click the Windows Taskbar, and click 
on Task Manager. Click the Processes tab and find NTVDM.EXE in the list—this will be easier 
if you click on ‘Image Name’ at the top of the list to sort the processes alphabetically.
Click NTVDM.EXE to highlight it, then click ‘End Process’. You will be warned of possible 
dire results and asked if you really mean it. Click Yes—nothing bad will happen.
It is not enough to highlight NBEDITOR.EXE and then click ‘End Process’. Likewise, it is not 
enough to highlight Nota Bene in the Applications tab (if it is visible there) and click ‘End 
Task’. You need to close NTVDM.EXE. Otherwise, if you try to run Nota Bene again in the 
same Windows session, it may well not open.

See the end of Chapter 4 for a list of some of the most common error messages.

CPG  Chapter 6: Writing XPL Programs                                                                      97



Programming: Running Programs

There are many different ways of running Nota Bene’s XPL programs; and no one way is 
always to be preferred to any of the others.  There are a number of different factors that you 
should take into account when deciding which method to use for a specific program: the fre-
quency with which you are likely to use it; the availability of regular phrase keys, and of unused 
keys in your keyboard file; and so on.  In this chapter various methods will be described.  You 
can experiment with them all, and decide which suits you best for a particular program and con-
text.  The list that follows is extensive, but it is not claimed to be exhaustive.

1. Executing the command from the command line Four basic methods were described 
in Chapter 5.  The most straightforward is the one that runs the program from memory or disk, 
by entering a command on the command line and executing it from there with
F9 run x:filename.run F10
If the program has been previously loaded into general memory, Nota Bene will run it from 
there; otherwise it will look for it on disk.  Access to memory is faster than access to disk, but 
some memory is being kept locked up for as long as the program is stored there. [Probably not 
important in NBWin on a computer running WinXP.]  And, whether the program is run from 
memory or disk, this method normally takes several keystrokes (a minimum of 6 if you have a 
single-letter filename) to execute the command to run it.  Even if you make no typing errors 
while entering the command, having to move your attention from your text to the command line 
and then entering all those keystrokes can be distracting from your work.

This can be avoided by staying with the run command but finding a more economical and effi-
cient way of executing it.  Fortunately there are several.

2. Mapping to a keyboard key If in one of the tables of your keyboard file you have a 
key that is not being used for other purposes, and preferably one that will serve as a good 
mnemonic for the program in question, you can map the program to that, with a line that looks 
like this:

NN=bx,r,u,n, ,p,r,o,g,r,a,m,.,r,u,n,q2
For ‘NN’ you substitute the number of the key in the table; for ‘program’ substitute the filename 
of the program.  If the program is not in the subdirectory where you are when you want to run it, 
you must prefix ‘,p,r,o,g,r,a,m,...] with the drive\path needed to find it.  (You do not have to use 
‘run’ as the extension in the program’s name; but you may want to use the same extension for all 
your programs, making it easier to identify them, and to find them with wild card directory 
orders, such as ‘dir *.run’).  It is essential that every character in that line (after the = sign) is 
separated from the character preceding it by a comma─with two exceptions,the keyboard func-
tions ‘bx’ and ‘q2’. When you have written that line, saved the keyboard file, and reloaded it, 
then any time that you want to run that program, a single keystroke will do it; your eye does not 
have to go up to the command line, and you do not have to do any distracting typing.

3. Loading directly on a Phrase Key If you have loaded the program to a regular 
phrase key (A to Z, 1 to 9), for example A, with

  F9 ldpm  <filename>.run,A F10

98                                                                     CPG  Chapter 7: Running XPL Programs



then, whenever you strike Alt+Shift+A, the program will be run.  Using the keys available in a 
phrase library for loading and running programs can be one of the most efficient methods of run-
ning programs, because it is all done from inside memory; no access to disk is involved at all.

4. Loading indirectly on a Phrase Key This method may sound a little complicated, but 
it really is not.  And it is very economical, because it enables you to run even the longest pro-
gram from a phrase key, while requiring the minimum of memory to do it.  Basically what you 
do is to load on to the key, not the program that you want to run from that key, but a second pro-
gram, that consists solely of an instruction to run the first program.  Let us suppose that the pro-
gram that you want to run from the key is called WORDFREQ.RUN.  Create a second program 
called, say, PGM, and write in it the following single line:

BX run wordfreq.runQ2
Save that file, and load it to a key with:

F9 ldpm PGM,A F10
If you now use Alt+Shift+F3 to see what is saved to ‘Alt+Shift+A’ you will see that it is the 
line that PGM consisted of.  Now, whenever you strike the key ‘Alt+Shift+A’, it will place on 
the command line the command ‘run wordfreq.run’, and execute it.  The same technique can be 
used for indirectly loading other programs on other phrase keys.  The programs themselves can 
be as long as you need, but the amount that is actually stored in memory per program is only a 
few bytes.  Also you no longer need the file PGM, which can be deleted from disk, after you 
have saved to disk the phrase library into which you have loaded it.
[This is probably only worth doing in NbWin, in WinXP, with very long programs, if at all.]

5. Loading on an Ampersand Phrase These are phrases &A to &Z, &1 to &9, and 
they can be used only for loading programs to, and running them from; they cannot be used, as 
regular phrases and extended phrases can, for saving text or programming code to.  The com-
mand to load is similar to that for regular phrases:

F9 ldpm <filename>,&x F10
substituting for ‘x’ any character from A to Z, or 1 to 9. There are two ways to run a program 
after it has been loaded to an ampersand key:

 i. By the command on the command line:
   BC func &xXC
 ii. By mapping the ampersand phrase to a key in your keyboard file, so that the key’s 

line reads:
   NN=&x
  After the keyboard file has been saved and reloaded, striking that key will run the 

program loaded on the ampersand phrase.  Clearly, as in the case of the ‘run 
<filename>.run’ command above, method ii. is the more economical.

  Unlike regular phrases, ampersand phrases are loaded to general memory, so that 
they do not compete for a portion of the limited 64k buffer that regular phrases go 
to.

  But ampersand phrases do have certain limitations.
  a. In the case of a regular phrase, you can find what has been loaded to 

it by displaying the list of current phrases with Alt-F3, or by displaying what has 

CPG  Chapter 7: Running XPL Programs                                                                     99



been loaded to the particular key (say, A) with the command ‘func sk’, followed 
by ‘A’.  There is nothing corresponding that you can do with an ampersand 
phrase.

  b. In the case of a regular phrase, you can save it to disk as part of a 
phrase library, and thus have it available for later working sessions.  This cannot 
be done with ampersand phrases, which are stored in memory only, and are lost 
whenever you leave Nota Bene, or switch off the computer.

 iii. Nevertheless there is something that you can do, and that is worth doing, if you 
have several programs that you would like regularly/frequently loaded to amper-
sand phrases.  You can create a program that is, in effect, a batch file called, say, 
AMPERSND.RUN, consisting of a succession of ‘ldpm program,&x’ lines, look-
ing like this:

    Program to load ampersand phrases
   BC ldpm program1,&1
   BC ldpm program2,&2
   BC ldpm program3,&3
   BC ldpm program4,&4
   BC ldpm program5,&5
  Then, if you run AMPERSND.RUN, you will have those five programs loaded in 

a single operation; you can also, by viewing the file, see what programs you have 
loaded on which ampersand phrases.

 iv. You can go one stage further, by including in your NBSTART.INT file the line:
  BX run ampersnd.runQ2;*;
  Your five programs will be loaded to their respective ampersand phrases every 

time you start up Nota Bene.

6. Running Programs from XYWWWEB.U2  The XYWWEB.U2 program com-
pendium allows you to run hundreds of programs by typing a mnemonic on the command line 
and striking your help key—and you can add your own programs to the bottom of U2.

7 Running Programs from Macro Express menus In Nota Bene 4 you could load pro-
grams on user help screens. Each help screen could contain 35 programs (corresponding to the 
alphanumerics, all but 0). You devoted one key in your keyboard table to calling the help screen; 
from there, striking one letter ran the program. It was beautifully economical. Instead of using 
up 35 keyboard-table slots, you used one; and the help screen told you not only the names of the 
programs, but also a brief description of what they did.
You cannot make user help screens in Nota Bene for Windows. But you can make the exact 
equivalent if you buy a shareware program called Macro Express (http://www.macros.com/). It 
allows you to build what they call menus of macros, 36 per menu. You can specify that the 
menus will work only with Nota Bene. Each line of a menu would contain a macro reading:
  F9 run<filename>.run F10.
The key combination that opens the menu is defined within Macro Express, but it must be one 
that you do not want to use for something else in Nota Bene.
Exactly as with NB4 user help screens, you strike the key combination; a menu appears with a 
list of programs; and you strike the appropriate alphanumeric to run one you want. You can, of 
course, have more than one Macro Express menu devoted to running user programs in NBWin: 
you use one keyboard key for each menu.

100                                                                   CPG  Chapter 7: Running XPL Programs

http://www.macros.com/)


There are other shareware macro programs; this is just the one I know and use—with NB and 
with other programs.
XYWWWEB.U2 is vastly more economical of keyboard space than using Macro Express, but  
you have to remember (or look up, or make a list of) the mnemonics.

8. Running Programs from a Library file, using numbers as arguments
This is a method that Nota Bene for DOS employed in its .OVL files, using letters as argu-
ments.  But numbers will do as well, as illustrated in the example below.  That is a library of 
seven programs, constituting a file that we will suppose to be called  FILES.RUN.  Any one of 
the component programs can be run with the command run files.run,#, replacing # with the 
number for the program wanted.  To save space here, all the programs have been left blank 
except No. 6, which reports the length of the current file, on the command
 run files.run,6.

Benefits of library files
The advantages of packing a number of programs into a library are that it avoids wasting unused 
disk space on a multitude of possibly small program files, and that it cuts down on the number 
of entries in a directory.  Programs can be picked out and run by any of the methods already 
described.  There is theoretically no limit to the number of programs that can be stored in one 
library-program, but in terms of efficiency and speed of operation probably a limit of about 
twelve should be observed. [This observation may not be pertinent in NB for Windows on a rea-
sonably fast computer.]

One precaution must be taken when creating a library file of this kind.  No specific label must 
occur in more than one program.  If the same label occurs in two programs, the corresponding 
«gl» call will always go to the first matching label that it finds in the library; conseqently the 
second of the two programs will never run correctly. [There are routines to relabel and renum-
ber programs in XYWWWEB.U2; I have not tried them.]

In the following sample program, the first part determines what is the number entered as argu-
ment to the command to run the program, and then uses a «gl» call to point the program to the 
label at the start of the appropriate member program.

Sample library program, using numbers as arguments
 ────────────────────────────────────────────────────── 
«lbPROGRAMS»»;*;
«if«pv00»==1»«glSAVEA»«ei»;*;
«if«pv00»==2»«glSAVEB»«ei»;*;
«if«pv00»==3»«glDELBAK»«ei»;*;
«if«pv00»==4»«glCOPYBLK»«ei»;*;
«if«pv00»==5»«glSALIB»«ei»;*;
«if«pv00»==6»«glFILLNGTH»«ei»;*;
«if«pv00»==7»«glCOMPARE»«ei»;*;
;*;
;*;(1)«LBSAVEA»
;*;
;*;(2)«lbSAVEB»
;*;
;*;(3)«lbDELBAK»

CPG  Chapter 7: Running XPL Programs                                                                   101



;*;
;*;(4)«lbCOPYBLK»
;*;
;*;(5)«lbSALIB»
;*;
;*;(6)
«lbFILLNGTH»DX «sx20,«cp»»BF «sx21,«cp»»«sx21,«pv21»+1»BC jmp «pv20»XC DO BC 
File is «pv21» Bytes longGT «ex»;*;
;*;
;*;(7)«lbCOMPARE»

 ────────────────────────────────────────────────────── 
9. Running Programs from a Library file, using text as arguments
[I have not tried this; the text of the program is unchanged from the NB4 version of the CPG. It 
is similar to that of the sample library on p. 101 above, so it should work.
The empty labels at line ends are NB4’s way of doing what we now do with the comment string 
(;*;). If you try the program, you must change all instances of ‘ε’ to ‘î’ - ASCII 238. You will 
also need to change all CRs to ;*;CR, and semicolon-hyphen strings at line beginnings to ;*;
Note that the single letters/strings described in (1) below are separated by hard spaces.

The disadvantage of running programs using numbers as arguments is that it depends on identif-
ying a sub-program within a library by one or more digits (or letters), and that neither of those is 
mnemonically helpful: to have to remember that 6 is the number of the program for reporting the 
length of a file can be a nuisance.  An alternative method was devised by Itamar Even-Zohar, 
which replaces the numbers with text of your own choosing, so that the sub-program can be 
identified by, say, the word LENGTH, which is easier to associate with that particular program 
than the digit 6 is.

Below is a textual representation of this library-program, the name of the program here being 
assumed to be XC.  Following the representation of the program there is a description of the 
basic procedure for entering sub-programs into it.

Sample library program, using text as arguments
 ────────────────────────────────────────────────────── 
«sv01, »«sv06,,»«sv14,»«sv99,XC: 
»«lbParsText»«sx00,@UPR(«is00»)»«if((«is01»ε«is00»<0)&(«is06»ε«is00»<0))»«sx00,«is00»+
«is01»»«ei»«if(«is06»ε«is00»=>0)»«sx01,«is06»»«ei»«xs00,01,02,03,04»«sx05,«is02»»«sx00,«is
04»»«lbParsCommand»«sv11,? A B C LENGTH E F G H I »«sx99,«is99»+«is11»»«if«is05»ε«is
11»<0»BC «pr No such item in XC »«EX»«ei»«if«is05»==«is14»»BC «pr No com-
mand»«EX»«ei»«sv19,1»«sv01, »«lbPARS»«xs11,01,02,03,04»«if«is05»ε«is02»=>0»«glRUN-
ROUTINE»«ei»«sx11,«is04»»«sx19,«pv19»+1»«glPARS»

«lbRUN-ROUTINE»«lb
»«if«pv19»==1»«gl-?»«ei»«lb
»«if«pv19»==2»«gl-A»«ei»«lb
»«if«pv19»==3»«gl-B»«ei»«lb
»«if«pv19»==4»«gl-C»«ei»«lb
»«if«pv19»==5»«gl-LENGTH»«ei»«lb

102                                                                   CPG  Chapter 7: Running XPL Programs



»«if«pv19»==6»«gl-E»«ei»«lb
»«if«pv19»==7»«gl-F»«ei»«lb
»«if«pv19»==8»«gl-G»«ei»«lb
»«if«pv19»==9»«gl-H»«ei»«lb
»«if«pv19»==10»«gl-I»«ei»«lb
; for future routines:
»«if«pv19»==11»«gl$»«ei»«lb
»«if«pv19»==12»«gl$»«ei»«lb
»«if«pv19»==13»«gl$»«ei»«lb
»«if«pv19»==14»«gl$»«ei»«lb
»«if«pv19»==15»«gl$»«ei»«gl$»

«lb: Labels (programs) should be inserted here:»
«lb-?»BC «pv99»«sx98,@siz(«is99»)»«if«pv98»>73»«pr No room for additional display  
»«ei»«ex»

«lb-A»BC this is A«ex»
;-<description>

«lb-B»BC this is B«ex»
;-<description>

«lb-C»BC this is C«ex»
;-<description>

«lb-LENGTH»DX «sx20,«cp»»BF «sx21,«cp»»«sx21,«pv21»+1»BC jmp «pv20»XC
DO BC File is «pv21» Bytes longGT «ex»
;reports length of current file

«lb-E»BC this is E«ex»
;-<description>

«lb-F»BC this is F«ex»
;-<description>

«lb$»«ex»

Explanation of library program
 ────────────────────────────────────────────────────── 
1. The sv11 sequence  The call «sv11,...» saves to phrase 11 the follow-
ing:

? A B C LENGTH E F G H I.
The interrogation mark identifies a sub-program that will display on the command line a list of 
all the sub-programs in the library.
The single letters A-I represent blanks, waiting to be replaced by mnemonic textual strings for 
individual programs.
The letter D has been replaced by the string LENGTH, which serves to identify a sub-program 
(the same one as in the previous section), that reports on the length of the current file.

CPG  Chapter 7: Running XPL Programs                                                                   103



2. The gl sequence  The same sequence of identifiers is repeated in a suc-
cession of «gl» calls, each pointing to its corresponding label below.

3. The labels    Then follow the labels, after each of 
which will be inserted the appropriate sub-program.  At present
«lb-LENGTH» is followed by its program, and the other labels by dummy messages, waiting to 
be replaced by programs.

4. Adding a program To insert a program, you need to enter a suitable 
mnemonic string three times:
  (i) in place of an alphabetical letter in the «sv11,...» call;
  (ii) in place of the same letter in the appropriate «gl...» call;
  (iii) in place of the same letter in the appropriate «lb...» call.  Then insert 

the program immediately after the label.

5. Running a sub-program To run a sub-program with the ‘run’ command, enter 
that command on the command line, followed by the name of the library file, followed by the 
mnemonic for the sub-program.  A full version of the command to run LENGTH will be:
 run xc,length
The argument, ‘length’ is there separated from the ‘run xc’ by a comma, but a space is just as 
good a separator, as in:
 run xc length
With this particular type of library-program it is not necessary to type the whole name of the 
sub-program.  All that is needed is a long enough string of characters from the name to identify 
it uniquely.  In this case, as there are as yet no other names that might conflict with it, ‘le’ or 
even ‘l’ would be sufficient, as in:
 run xc le   or run xc l
If there are other sub-programs in the library, care must be taken to choose a genuinely unique 
string.  For example, if there is one sub-program called COPY, and lower down the library 
another called COMPARE, then:
 run xc co    wil l  a lways f ind COPY, never 
COMPARE
 run xc com   will find COMPARE
Although it is usually convenient, especially from a mnemonic point of view, to start from the 
opening characters of a name, this program does not require that.  Although ‘co’ will find 
COPY, ‘om’, ‘mp’, ‘pare’, ‘pa’ etc., will all find COMPARE─in the absence of any earlier sub-
programs in the library with those strings in their names.

If the sub-program is one that admits or requires arguments, they can be added on the command 
line after its name, or mnemonic abbreviation.

6. Displaying list of sub-programs The command:
 run xc ?   
will display on the command line the names of the sub-programs in the library, up to the limit of 
the command line’s capacity.

104                                                                   CPG  Chapter 7: Running XPL Programs



Codes that work in Nota Bene for Windows

This list is perpetually provisional; new codes are added whenever I find them in updates of 
Nota Bene. You will find updates, under the title ‘Allcodes’ on Rick Penticoff’s NB Users’ web-
site (see Introduction: Resources).

It provides an alphabetical list, as complete as I can make it, of codes that work in NB Win. It 
includes operators, wildcards, functions, immediate commands, embedded commands, and 
defaults. Operators and wildcards come before the main list.

Some codes have different meanings depending on whether they are:
—functions (2-character mnemonics that can be assigned to keys in the .KBD File)
—embedded commands (enclosed in command brackets)
—immediate commands (typed on the command line, or in programs, and executed
    with BX...Q2 or BC...XC)
—defaults (typically in NB.DFL as ‘DF xx=yy’).
—variables

The embedded command ‘CP’ means ‘cursor position’; function CP means copy, and the vari-
able «va$CP» shows the system Code Page. It is important to note these differences when decid-
ing what code to use. It is no use embedding «CP» in a program if you want it to copy text.

Immediate commands are entered in the list in lowercase, to distinguish them from the other 
types of code. They need not be typed in lowercase on the command line.

Some codes are shown in the form: XX # or XX #/#; or XX x.
# = any number (sometimes a limited range)
x = any letter

The codes list does not include functions found in NB.KBD that have the form:
 ##=&X,Y,Z
These can be combined with other keyboard definitions, but cannot be used in programs. You 
can put them there, using programming mode, but they won’t work. Some of the ‘Y,Z’ combina-
tions are regular functions. For instance, ‘##=&X,Q,L’ moves the cursor one space to the left; 
and so does the function ‘QL’. But quite a few do not work except from the keyboard. I have 
included the functions, such as  ‘QL’, that work on their own, but not those that only work from 
the keyboard.

I have tested the codes, except those marked ‘not tested’. Most of those are default settings 
found only in NB.DFL. There are also a few commands such as ‘delall’, which I have not tested 
because I fear from the description that they might  have drastic consequences.

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                  105



Operators

+ Addition
- Subtraction
* Multiplication
/ Division
== Equals to (double == necessary except in maths)
< Less than
> More than
<= Less than or equal to
=> More than or equal to
<> Less than or more than
& Performs logical and of 2 or more values
! Performs inclusive or of 2 or more values
@cnv Converts function call into keyboard function
@not Performs a not of the following value
@siz Checks number of characters in a string. This was used in NB DOS.
      In NB Win use instead «va|01»      [| isnASCII 166]
@upr Uppercases (use instead of NB DOS’s  rk)
@xor Performs exclusive or of 2 values
@int Save result of calculation as an integer (throw away fractional value,
   if any) (result shows on prompt line)
@abs Returns absolute value of a number or calculation, i.e., the numeric result,
     without regard to sign
@dat Convert date to hexadecimal number YYYYMMDD. E.g.,
         «SX50,«VA$DAd.m.yyy»2.@datQ2 «PR@50»
      returns current date on prompt line
@dec Convert hexadecimal number to decimal number [examples in
    XYWWWEB.U2—search for string ‘{{5@dec}}’]
@hex Convert decimal number to hexadecimal number [examples in
    XYWWWEB.U2—search for string ‘{{5@hex}}’]
@dts Convert hexadecimal date YYYYMMDD to decimal in format determined
     by default FZ. These two are used to compare two input dates, for
     instance,  to determine which is earlier. [Search for ‘{{5@dts}}’ in U2]
@lwr Lower Case function  [Search for ‘{{5@LWR}} ’ in U2]
@num Changes datatype of phrase from string to number (numbers have an  invisible
  2-byte flag, consisting of Ascii 0 followed by Ascii 1,  appended to them
   in memory and therefore are 2 bytes longer    than their string counterparts)
@tim Convert military time HH:MM to hexadecimal number HHMM0000.
 [Search for ‘{{5@tim}} ’ in U2]
@tms    Convert hexadecimal time HHMM0000 to time format determined by
     default MT [Search for ‘{{5@tms}} ’ in  XYWWWEB.U2]
î  (ascii 238 - in NB DOS showed as epsilon) Determines if first string is contained
     within second (reports number). Returns position  of first occurrence of string1
     within string2, starting at position zero (case sensitive).
             «SX01,"e"î"limpet"»
      returns "4" in phrase 01.

106                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



ð (ascii 240)  Determines if one string contains another (true or false). Returns "TRUE"
      if string1 contains string2. Principally used in conditional tests, where th e position
  of string 2 within string 1 is unimportant.  Case sensitive. E.g., this program segment:
          «IF"limpet"ð"limp">«PR OK»«EX»«EI»«PR Not OK»«EX»
     returns ‘OK’

Wildcards

View this part of the list in Draft or Show Codes View to see wildcards properly displayed, except 
those starting with a caret (^).

Entering wildcards that  look like reverse-video single characters.
Into a  keyboard table: type the two-character code (e.g., ‘wl’ for the  single-letter wildcard. When 
you press the key combination, the wildcard will appear. Or for wildcards that do not have two-
character versions, use nn+character (e.g., ##=nn,- for the any-but wildcard)
On the command line:do F9 func nn F10, then press the appropriate letter or number (e.g., ‘n’ for 
any single number). The wildcard will appear on the command line at the end of the ‘func nn’ com-
mand. You can erase ‘func nn’ and substitute (for instance) a search command.
Into a program, do  F9 func nn; put cursor in file (e.g., with  Alt F8), then press  F10.

Entering double-character reverse-video-type wildcards
Into a program, e.g., WA , do ‘pfunc’ plus the 2 characters.
On the command line, enter them into text with pfunc, then cut and paste to the command line.

Entering caret + character wildcards
In text or  on the command line, type the caret character plus the character.

0-9 or ^0-^9 Defines maximum no. of times the character can  [function]
    appear in the string. (e.g., to command "wild 80",
    use Wildcard-8 followed by Wildcard-0.)
A or WA or ^A Any single letter or number [function]
- or ^B or ^- Any but next single character (represents NOT)  [function]
‘  or ’ or WC or ^C Carriage return character [Ascii 17, ’ ] [function]
€ or ^E or ^+ ?? Any single sentence separator (full stop/period, question
      mark, exclamation point) [function]
??�or ^F Line Feed Character [function]
L or WL or ^L Any single letter A-Z  [function]
N or WN or ^N Any number 0 through 9  [function]
O or ^O Allows search for more than one string  [function]
P or ^P Regular or Alternate paragraph return  [function]
@ or ^R Regular paragraph return  [function]
�  Carriage return+linefeed wildcard (Enter with ‘func WC’)
S or WS or ^S Any single separator  [function]
� or WT or ^T Tabs  [function]
W or WW or ^W Any string from 1 to 80 characters. Mmust be used with at [function]
     least 1 other character. ‘se /x^W/’ works; ‘se /^W/’ doesn’t.
X or WX or ^X Any single character  [function]

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      107



Main Alphabetical List

[U Begin deletion operation that will be saved to clipboard “undelete” stack [function]
U] End deletion operation that will be saved to clipboard “undelete” stack [function]
 NB:These two must be used in pairs.
<< Enters ® in program [function]
>> Enters ¯ in program [function]
@0-9/A-Z Insert contents of phrase key x or run program assigned [function]
    to phrase key x.
&0-9/A-Z Run program assigned with LDPM filename,&# or &x  [function]
    NB: don’t load user programs on ampersand keys
    C, D, E, G, I, L, S, U, X, which are used by Nota Bene.
#1 - #9 Move cursor to window no. 1 / window no. 9 [function]
    NB: In this definition, ‘#’ means the ‘#’ character; it
    doesn’t stand for ‘any number’
1A 0/1 Read past end of file character (1), or stop at it (0)  {DF 1A=0} [default]
    (Doesn’t work for me

ab or Abandon file    [immediate command]
  abandon 
ab/nv Abandon file without verification (not necessary if Prompts, [immediate command]
    Abandon is unchecked in Tools, Preferences)
abort Abandon file [immediate command]
AC Turn Auto-Check on and off. [function]
   Function string AC,AZ,AZ in a keyboard table or program
   turns off auto-replacement. When Auto-Check is on,
   command VA $AC returns 1.
AD Append to macro [function]
AH Allow  hyphenation (on/off=1/0)  {DF AH=0} [default]
AK Accelerator: Move to a specific item in action bar  or dialog box.  [function]
    Works only if assigned to the relevant Alt key; doesn’t work in
     XPL programs.
AL 0/1 Automatic leading (line spacing) off/on [embedded command, default]
    {DF AL=1}
AN 0/1 Toggles command brackets between ®  ¯  (0) and « » (1)   [default]
    {df AN=1}
AOP Backup path. {DF AOP=c:\nbwin\bak} [default]
AOT Min, max Autosave time in minutes  {DF AOT=2,2} [default]
apfil Append text to file on disk. ‘apfil x, now is the time’ [immediate command]
     appends ‘now is the time’ to file x. (No prompt; it just does it.)
append Append one file to another [immediate command]
apt Append one saved file to the top of another saved file [immediate command]
 [See ‘Apt’ in CPG Appendix]
AR Execute Expand Abbreviation (NB: toggle Expand Abbreviation is AZ) [function]
    (This is now, in combination with function XH, on the Ctrl key in all
     keyboard states; you can expand an abbreviation by pressing Ctrl.
    It also works, with or without XH, on other keys.
 When Auto-Replace is on, command VA $AR returns 1.

108                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



AS Move cursor between the two windows last displayed. [function]
AS Argument string [embedded command]
attrib Change file attribute (read only option) [immediate command]
au Toggle Auto-Uppercasing on and off [immediate command]
AZ Toggle Auto-Replace on and off. [function]
   Function string AC,AZ,AZ in a keyboard table or program
   turns off auto-replacement.

BB Breakable block (end of non-breakable block) [embedded command]
BC Break column (marks point where column breaks in [embedded command]
    snaked columns)
BC Clear command line and move cursor to start of command line. [function]
BD Delete previous character. [function]
BF Move cursor to bottom of file. [function]
BF 0/1 Bottom footnotes - 0 = footnotes immediately [embedded command, default]
    below text; 1 =  at bottom of page {DF BF=1} 
bg Background color (d bg=#,#,#, where ## are  [immediate command, default]
    red/green/blue values)
BK Stop command currently in progress; stop user program. [function]
BK 0/1 Backup off / on {DF BK=1} [default]
BL 0/1 Blank lines at top of page not suppressed / suppressed [embedded command, default]
    {DF BL=1}
BL Jump to left edge of current balanced pair of command brackets [function]
     (current=where cursor is located). Lets you see whether you are at
      beginning or end of an embedded command or variable, so that  e.g.
     you could DeFine it. Cursor must be adjacent to command bracket.
BN Buttons Face  {DF BN=0,18,18,12,1} [default]
 argument= ButtonType,
  Toolbar Width
   Toolbar Height
  button size
  toolbar indent
   (Type is: 0=Picture, 1=Text, 2=Both)
      [Changing the arguments in NB.DFL does not seem to affect
      the button faces.]
BO Border - defines borders(see NB Help) [embedded command]
BR Jump to left edge of current balanced pair of command  [function]
     brackets. (see BL)
BS Move cursor to bottom of screen. [function]
BT Bottom margin: footer, nominal, minimum, maximum:  [embedded command, default]
    footer is distance from bottom of page to bottom of
       running footer.
    nom. is normal number of inches (or other default
        measurement) allowed for bt.
    min and max are minimum and maximum number of inches.
    {DF BT=0IN,1.1IN,.3IN,1.3IN}

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      109



BX Blind Execute - execute command without putting it on command line [function]
    BX is not limited to length of the command line; and it does not blank
    the command line. [Can’t be used in change-invisible commands.]
BZ Current button set (last argument in string)  [default]
    (not tested) {DF BZ=-,Button Sets,Main}

C0 - C14 Counter 0 - Counter 14 (11-14 not available from command [embedded command]
      line - use keyboard)
ca or call Open file [immediate command]
       Ca/100 - call in Show Codes View
      Ca/1 - call in Draft view
      Ca/4 - call in Page Layout view
      (See ‘dt’ below for other switches - except that /0 doesn’t
        work with ‘ca’; you must use /100.)
caf Open file without displaying graphics [immediate command]
cap Call program file (valid but unneeded in NBWin; use ‘ca’) [immediate command]
CB Move through windows in the reverse order to that in  [function]
    which they were opened. 
CB 1/0 Spell check beep on/off  {DF CB=0} [default]
CC Toggle cursor between command line and text. [function]
cc Change case (of character under cursor, or of defined block) [immediate command]
CD Move cursor down one line. [function]
cd or chdir Change directory  (‘cd’ on cmd line, with nothing after it, [immediate command]
     goes directly to NB main directory)
ce | cev Clear  redlining edit -  ‘ce/v’=verify each change [immediate command]
cf Capitalize first letter of word (of character under [immediate command]
     cursor, or of defined block)
CF 0/1 Set footnote separator format status, to use either separator [default]
    1, 2, or 3 as needed (1), or only separator 1 (0)  {DF CF=0}
CH Delete the text on the command line without moving cursor [function]
ch | cha Change / change absolute (i.e., if case matches) (In NB Win, [immediate command]
    ch/cha are the same as ci/cia. For switches, see ci)
CI Switch to Overstrike mode (from Insert). [function]
ci  | cia Change, invisible / change, invisible absolute  [immediate command]
                                        (i.e., if case matches)
     Switches:
      ci/e |string|    changes in elements (as well as body of file)
      ci/w |string|   finds string only if it's a self-contained word.
      ci/s  |string|   limits the change  to selected text (defined block).
         If cursor is outside block, change is made from beginning to end.
         If cursor is inside block,  from cursor location to
            end of block.
      ci/t |string|     starts search at top of file
      ci/#  |string|   ‘ci/3 |string| finds the third instance of string (you can
            substitute any number).
CK 1/0 Spelling checker: ignore words with number (1=ignore)  [default]
    {DF CK=3} (What are 0 and 2?)
CL Column location (position) [embedded command]

110                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



CL Move cursor left one space (to previous line if at beginning) [function]
clrasg Clear all &@  phrases (XyWrite)  [immediate command]
   (NB: use with great caution - clears all keyboard ‘&+letter’
    assignments for the session, so that, for instance, F9  will
    give message ‘No macro assigned’ instead of going to cmd line
clrlib Clear all phrase-library phrases from memory [immediate command]
clrsgt  Clear all phrase-library  phrases (XyWrite, same as clrlib [immediate command]
   - works in NB)
CM Toggle between draft and expanded (show codes) view. [function]
CO Insert a comma on cmd line or in text (use in keyboard  [function]
    file  to enter an actual comma character into text)
copy Copy a file   [immediate command]
copy/nv Copy a file without verification), overwriting existing [immediate command]
    file if necessary
copy/mv Move file from one directory to another [immediate command]
CP Text cursor position [embedded command]
CP Copy currently selected block of text to cursor position. [function]
CR Move cursor right one character; wrap to next line. [function]
CR Sets cursor values  {DF CR=1,0,0,4} [default]
    a=blinking (0) or non-blinking (1)
    b=not used in Windows
    c=not used in Windows
    d=the number (0-5) specifies the width of the insertion point in
       Page Layout View
CS:5   The series of symbols that can be used instead of numbers in [default]
  footnotes  (not tested: I haven’t tried to change them) {CS:5}
    *
    †
    ‡
    §
CT  Create cellular table (see NB Help, Cellular Tables) [embedded command]
CU...» Count up operator (execute a segment of code [embedded command]
     a specified number of times)
CU Move cursor up one line. [function]
CV 0/1 Prompt user before executing change  (0=No 1=Yes) [default]
cv Change with verification (switches as for ci/cia)   [immediate command]
cva Change with verification, absolute (match case) [immediate command]
    (switches as for ci/cia)

d or Default  - ‘d xx=#’ (on cmd line only - in NB.DFL the [immediate command]
  default   usage is  ‘DF xx=#’)
d: Drive - e.g., ‘c:’ changes to drive C: [immediate command]
D1 Undelete clipboard. DF D1=50,5 saves 50 clips to the NB
    clipboard, each 5 letters or more long
DA Date code in text (updates) [embedded command]
DB Move cursor to beginning of selected block. [function]

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      111



DC Define counter (set counter numbering) [embedded command, default]
     dc 0=1    Decimal numbers (default)
     dc 0=I    Uppercase Roman numerals
     dc 0=i     Lowercase Roman numerals
     dc 0=A   Uppercase letters
     dc 0=a    Lowercase letters
DC Begin selecting a column of text. [function]
DD End selecting block and delete it. If no selection, delete character. [function]
DE Move cursor to end of selected block. [function]
DE Soft carriage return {DF DE= ,} [default]
default Same as ‘d’ [immediate command]
del or Delete a file. Use switch /nv to delete without [immediate command]
  delete     verification (or uncheck ‘Delete’ in Tools, Preferences)
delall WARNING. Deletes ALL files in current directory, [immediate command]
    without verification
DF Begin or end selecting a block of any size. [function]
DF Dump footnotes (puts all footnotes at marker location) [embedded command]
DF 1/2/3 Dump footnotes, set 1, 2 or 3 [embedded command]
DH Conditional hyphen {DH=} (go to Show Codes View to see character) [default]
DI Directory defaults, command line  {DF DI=1,6,0}  [default]
     Affects long directory listings (see command ‘dirl’). In:
         d di=x,y,z
    x is filesize divisor (if x is more than 1, actual filesize is displayed divided
         by x. E.g., divide by 1024 to display filesize in kilobytes.)
    y is number of lines displayed
    z can be 0 or 1. 0 retains CRs, 1 removes them.
dir   Directory - Switches: [immediate command]
 +  lists all files in the specified directory and
  any associated subdirectories, e.g.:
  ‘dir c:\nbwin\work+\*.nb’
    /fi filenames and file information only (i.e., no
                           subdirectories listed
    /pa subdirectory names only
    /su file summary information
    /na/fi filenames only
    /na/pa list of subdirectories in current directory,
     + list of available drives
dirl Display directory; show first few lines of file [immediate command]
DL Select line of text the cursor is on. [function]
DM Extend (or shrink) a block of selected text to cursor position.      [function]
dm Restore all defaults (XyWrite) - NB: not tested; use [immediate command]
    with great caution)
dmfont Change default draft view and cmd line font. NB: use with  [immediate command]
    caution. Changes display of « » on cmd line to ® and ¯.
    To restore to « », delete file C:\Windows\swlocal.ini.
DN Delete selected text without saving it on the delete stack. [function]
DO Turn on display (complement of DX). [function]
do Run DOS program with extension of .COM or .EXE [immediate command]
     while NB still running (not tested) 

112                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



Dorothy Display images and text about Dorothy Day [immediate command]
dos Opens a DOS window at the current directory [immediate command]
DP Select paragraph the cursor is on. [function]
DS Select sentence the cursor is on. [function]
dsort Sorted directory (same as ‘order’) [immediate command]
     Switches:
       f   to sort by filename
       e  to sort by extension
       d  to sort by last saved date and time
       s  to sort by size
       p  to sort by path name
       r  to sort in reverse order (use in addition to other modifiers)
       h  to add a header on top of directory
    You can use more than one switch, separated by commas
DT Views:  {DF DT=4} [immediate command, default]
    DT=0 Show Codes View ("100" in "CA/#|ED/#|ME/#|RE/#")
    DT=1 Draft View without page breaks
    DT=2 Draft View with page breaks
    DT=4 Page Layout View
    DT=9  DT=1 with markers hidden
    DT=10 DT=2 with markers hidden
    DT=12 DT=4 with markers hidden
    DT=17 DT=1 where only markers affected by scoping rules are hidden
    DT=18 DT=2 where only markers affected by scoping rules are hidden
    DT=20 DT=4 where only markers affected by scoping rules are hidden
DW Select word the cursor is on. [function]
DX Freeze display (complement of DO). [function]
DY m,n Printout color (m=foreground, n=background;  but NB6 does  [embedded command]
    not support printing non-white background colours)
    m and n can be:
 1 Black 6 Cyan 11 Orange
 2 Blue 7 Magenta 12 Red
 3 Brown 8 Maroon 13 Violet
 4 Charcoal 9 Neutral 14 White
 5 Green 10 Olive 15 Yellow
DZ End selecting a block if selection is in progress. [function]
DZ Set date format  {DF DZ=d Mmmm, yyyy } [default]

EB 1/0 Error beep beep on/off   {DF EB=0} [default]
EC Move cursor to end of current cell  [embedded command, function]
ED Select current row of cells in a table [function]
edp Call file cursor is on. 'edp x' calls file x in directory [immediate command]
EE Delete a row of entries in a table. [function]
EE [+] # Element end - offset from bottom margin [embedded command]
    + sets offset from bottom margin to top of capital letter
       in last line of text
    #  is vertical offset
EF Cancel window (e.g., editing window) and close  [function]

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      113



EH 0/1 Error Help off/on.  If off, prevents programs from incurring “errors” [default]
    deliberately. For example, if you call a network file, in order to learn
    whether you’re connected to a network, an error message might pop
    up and pause or halt your program.'d EH=0' prevents that.
EI End if - ends an «if» statement [embedded command]
EL # Extra leading - #=amount of vertical space;  affects only [embedded command]
    current line 
EL Move cursor to far left of line, then to left end of previous line  [function]
EN Edit next: opens next file that matches a global filename specification.         [function]
    First you must call the first file that matches the filespec. E.g.,  if the
   filesec is ‘*.NB, do: ‘ca *.NB’. Then do ‘func en’ to call  the next .NB
   file; and continue till all files with that filespec have been called.
   If Quick Open is used to open a sequence of files of a particular type
    (that action by itself opens the first file matching that type), EN (on
   CS F9) opens the next file in the sequence.
EP Error prompt (set from Tools, Preferences, Command Prompts) [default]
 erase
 print selection
 print dir
 abort
 func SA
 del markers
 font mismatch
 prompt message for Correct command
      {DF EP=0,1,1,0,0,0,1,0}
ER   Error flag [embedded command]
ER Move cursor to right end of line, then to end of next line. [function]
erase Delete file [immediate command]
ernv Erase, no verification (NB: will erase saved version of  [immediate command]
    on-screen file) 
es 0/1 Error suppression off/on (on=1) (es 0 not needed in NB Win) [immediate command]
    ES 1 should go at the head of programs - errors can cause
    delays, even if error beep is turned off.
ES Release selected text  [function]
ES # Enable scoping rules  {DF ES=0} [default]
    Specifies the boundaries, or scope, of formatting commands:
       es=0 - apply formatting cmds from cursor position forward
       es=1 - apply them from beginning of current para, overwriting any
                  other occurrences of the command within the para. Stays
                  in effect until overridden by another occurrence of same cmd
                  in a subsequent para
       es=2 - ‘previous cmd forward’. Changes any previous occurrence
                   of the command to the new value. If no previous occurence,
                   inserts new value at cursor.
ET [+] # Element top margin (sets offset from top margin) [embedded command]
    + (optional) sets offset from top margin to top of a capital
       letter in the first line of text
    #  is vertical offset

114                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



EU Sets language dependent parameters  {DF EU=.,:,;}  (not tested) [default]
EX Exit program  [embedded command]
EX1  Exit all running programs [embedded command]
exist Test for existence of file (used in programming) [immediate command]

FA Framed area (see NB Help, Frames, Inserting  [embedded command]
    Frame, Command Line)
FC Force center (centres text) [embedded command, function]
FD Form depth (page length)  {DF FD=117DI} [embedded command, default]
FD Compare files in current and adjacent windows - stop where no match [function]
FF 0/1 Form feed off/on [embedded command, function]
FF Force display to refresh. (I don’t know what this does in NB Win) [function]
fg Foreground (text) color  (d FG=#,#,#, where  [embedded command, default]
     #,#,# are red/green/blue values)
FH Format bar (overall height of bar, height of multistate controls [default]
   inside, indent: button size)  (not tested) {DF FH=17,17,1,10}
FI Field identification (Ibidem, and XyWrite Mailmerge only) [embedded command]
find Find file on drive (can be slow unless path or  [immediate command]
    file specification included)
findl Same as ‘find’, but displays first few lines of file [immediate command]
FL Flush left - text flush with left margin [embedded command, function]
FM Compare files in current and adjacent windows -  [function]
     stop where files match
FM 1/2/3 Footnote format, sets 1-3 - define footnote format [embedded command]
FN1/2/3 Footnote, sets 1-3 - inserts footnote [embedded command]
fo Print to disk (file FO.TMP) [immediate command]
format Print to file FO.TMP (same as ‘fo’) [immediate command]
  (Worth using with caution, and definitely not in a DOS window!)
FP Final page (see NB Help, Page numbering, command line) [embedded command]
FQ Items that go on the format bar (not enabled in NB6.1) [default]
    {DF FQ=-,format sets,main}
FR Flush right - text flush with right margin [embedded command, function]
FS 1/2/3 Define footnote separator 1/2/3  [embedded command]
FT Define footnote transition [embedded command]
FT Set line height to fixed instead of automatic  {DF FT=.166IN} [function]
    (.166 is 1/6” or 1 line)  If auto-leading is on by default, it
    must be turned off with ‘d al=0’ for FT to work.
FU Fill units, used in NBDOS for estimating space of refs. {DF FU=3,5} [default]
    (not tested)
func  Insert/test/execute function (e.g., ‘func bc’ inserts a ‘begin [immediate command]
     column counter’ code  
FW 1/2/3 Define footnote wrap separator, set 1/2/3 - for notes that [embedded command]
    continue on a second page
FX Field separator  {DF FX= } [default]
FZ Date format for directory display  {DF FZ=d.m.yyyy} [default]

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      115



GC General citation [embedded command]
GH Move cursor to command line without clearing command line. [function]
GL...» Go to label [embedded command]
go #-# Go to page #  (and, optionally, line #) [immediate command]
gofile Go to open file (‘gofile x’ goes to file x if it’s open) [immediate command]
GT… Get contents of macro (phrase key) [embedded command]
GT Move cursor to text area. [function]
gtsgt Insert phrase-library phrase on command line or in text  [immediate command]
    (XyWrite but works in NB). To insert phrase in text, put
      cursor in text before  pressing F10.
GU Gutter - inside,outside  (white space beside columns,  [embedded command, default]
    cellular tables and frames {DF GU=2DI,0}
GW {DF GW=0} (in NB.DFL)  (What does this do?) [default]
GX (in NB.DFL)  (What does this do?) [default]
    {DF GX=0,0,255,255,0,0,255,0,0,255,0,255,0,128,0,0,255,255,255,255,0,
    128,0,255,0,255,0,128,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

H@ Open NB Help [function]
HB 0/1 Left-to-right or right-to-left text entry - also reverses  [embedded command]
    orientation of all words from beginning/end of current line
    to end of file.
hc Move cursor to beginning of current cell [immediate command]
HI Define whole file [function]
HK 0/1  Begin  link (HK 1);  end link (HK 0)       [function]
    «HK1Web|[web address]»[link name]«HK0»
    «HK1Email|[email address]»[link name]«HK0»
    «HK1NB File|[name of file]»[link name]«HK0»
    «HK1Auto|[name of file in other program]»[link name]«HK0»
    «HK1Paint|[name of bitmap file]»[link name]«HK0»
    «HK1Jpeg|name of .jpg file]»[link name]«HK0»
HM Move cursor to top of the screen. [function]
HV Sets hyphenation rules  {DF HV=6,3,3} [default]
HY 1/0 Automatic hyphenation on/off  {DF HY=1} [embedded command, default]

IC Interrupt command (makes running header start on next page, [embedded command]
    not current page, if placed before the running header.
IE End of linked text (see NB Help, Indexing) [embedded command]
IF… If conditional (must be paired with «EI» [embedded command]
IG Include graphic (merge graphic into file) (not tested) [embedded command]
IL Insert at Line (formerly known as Index label) [embedded command]
 enable specification of an alternate sort sequence for an entry
  (line, paragraph, Ibidem field). from NB, insert via Tools, Set
 Item Order. From Ibidem, insert via Edit, Set Field Sort Order
IM|IE Index marker. Subheadings are: [embedded command]
   IT=heading|subheading|sub-subheading Index Term (to be indexed)
   CA=**  (2-character mnemonic for category) Category -- of index term
   SC=**  (2-character mnemonic for subcategory) Subcategory

116                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



   RT=**  (2-character mnemonic for reference type) Reference Type
   GT=**  (2-character mnemonic for get-text type) Get Text Type
   SO=text or category+subcategory| same | same Sort Under
   CR=heading|subheading|sub-subheading Cross-reference term
IO Turns on/off document information  {DF IO=0} [default]
IP Indent paragraph {DF IP=4DI,0,0} [embedded command, default]
IR Open auto-check/auto-replace pair dialog [function]
IS… Insert text phrase [embedded command]
IT Insert a tab on command line or in text [function]
IV Invisible comment (not visible even if show markers is on) [embedded command]
 [See Function IV on p 164.

JC If cursor is on a marker, move right past all markers (until next text) [function]
    (not in Page Layout View)
JD Jump to dialog box (Instances in NB.DLG)  [embedded command]
JM Display dialog box or run menu routine with specified keyword. [function]
   Must refer to valid framename in loaded DLG file (e.g., NB.DLG)
   E.g.,  JMCustDispFrameQ2;*;
jmp # Jump to character # in file  [immediate command]
JR Journal  {DF JR=1} Not supported in NB8.0 (for future use) [function, default]
JU Justification on {DF JU=} [default]
JU 1/0 Justify on/off  (on=1) [embedded command]
jumplb Jump to label. ‘jumplb x’ jumps to label x [immediate command]

KF (On Ctrl 1, Esc - which activates Window Start menu systemwide) [function]

L1 Command Line colors: current path [default]
L2 Message Line colors: [default]
 1 status indicators
 2 normal message
 3 page number-clock
 4 wait-for-user message (|)
 5 warning message (ascii 12)
         (L0, L3, L4 have no effect in Windows)
    {DF L1=112}
    {DF L2=112,112,112,176,224}
la Codepage - language command: lets you work with files [immediate command]
    created in code page 437 (US) or 850 (multilingual).
    Default is 437. .(not tested)
LB 1/0 Determines whether selection will give error if complete  [default]
    framework element is not selected
LB Label - insert label in file [embedded command]
LB Move cursor to far left of line and no farther. [function]
lc Lowercase (of character under cursor or defined block) [immediate command]
LC Hard carriage return  {DF LC=¶} [default]

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      117



LD Leadering - insert row of characters (any single  [embedded command]
    character), move existing text flush to margin(s)
LD Line Down - move cursor directly down one line. [function]
ldkbd Load keyboard file  [immediate command]
ldhelp Load user help file, e.g., XYWWWEB.U2 [immediate command]
ldlib Load phrase library (NB: doesn’t load the associated [immediate command]
    .LIX comment file 
ldpm Load program on phrase key - ‘ldpm [name],[key]’ [immediate command]
ldsgt Load phrase library (XyWrite; works in NB - same as ldlib)  [immediate command]
LE Move cursor to far right of line and no further. [function]
LH Set super/subscript (low-high)  {DF LH=50,117,22} [default]
 a=percent size
 b=percent up
 c=percent down
LJ 0/1/2 Line justify - align one line of text left, (0), centre (1) or [embedded command]
    right (2) All text below that line remains aligned as it
    was preceding the lj command.
LL Move cursor left one character; don’t wrap to previous line [function]
     [Doesn’t work in Page Layout View. Use function CL
       in programming.]
LL Line leading (only works if auto-leading is turned off,  [embedded command, default]
    either by default or with ‘d al=0’ {DF LL=0LI,0LI}
LM # Left margin (obsolete) [embedded command, default]
    # is no. of inches (or other default unit) for margin   {DF LM=0in}
load Load keyboard file, NB.DFL, spell file, etc. (XyWrite/NB) [immediate command]
    In XyWrite the following types of file can be loaded
    with ‘load’(;XX; = file ID, at top of file):
 Printer file ;PR;
 Default file ;PR;
 Help file ;HL;
 Menu file ;MN;
 Dialog box file ;DG1;
 Personal spelling dictionary* ;SP;
 Sort file ;SO;
 Keyboard file ;KB;
 Hyphenation file ;HY;
 Command override file ;U2;
 Soft font file ;SO;
     Of these, ;SP;, ;KB; and ;HY; files exist in NB Win.
 *NB: ‘load + [fileB.spl]’ adds the definitions of [fileB.spl] to
    those of any already loaded .SPL file, for the current session.
LR Move cursor right one character; allow to move past carriage return. [function]
     [Doesn’t work in Page Layout View. Use function CR in
      programming.]
LR 1/0 Enter text from left to right (1) or right to left (0) [embedded command]
LS Line spacing  (in lines, inches, etc. - only works if auto-leading [embedded command]
    is turned off, either by default or with ‘d al=0’)

118                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



LU Move cursor directly up one line. [function]
LV 0-14 Counter 0 - Counter 14, for Table of Contents [embedded command]

M0 Type in mode at cursor, or make selected text match mode at cursor.  [function]
M1 Type text in normal mode, or make selected text normal. [function]
M2 Type text in bold, or make selected text bold. [function]
M3 Type text in underline, or make selected text underlined. [function]
M4 Type text in reverse mode, or make selected text reverse [function]
    (doesn’t work: inserts a non-functional MDRV)
M5 Type text in bold underline, or make selected text bold underlined.  [function]
M6 Type text in bold reverse mode, or make selected text bold reverse.  [function]
    (doesn’t work: inserts a non-functional MDRV)
M7 Type text in superscript, or make selected text superscript.         [function]
M8 Type text in subscript, or make selected text subscript. [function]
M9 Type text in italic or make selecte text italic. [function]
MB Display messages in message boxes vs. status line  {DF MB=0} [default]
MC Mark column - select cell at cursor location in a table  [function]
MD Scroll text and cursor down one line. [function]
MD Type style:
 md bi (bold italics) [embedded command]
 md bo (bold) [embedded command]
 md bu (bold underline) [embedded command]
 md dn (strike through) [embedded command]
 md in (double underline) [embedded command]
 md it (italics) [embedded command]
 md nm (normal) [embedded command]
 md sb or md sd (subscript) [embedded command]
 md su (superscript) [embedded command]
 md ul (underline)                                            [embedded command]
ME Reports on memory management (and see ‘mem’) [function]
me or Merge file [immediate command]
  merge
mem Reports on memory management [immediate command]
MF Enter certain characters (in keyboard table)+ 4 hex digits  [function]
    Cursor must be in file when function is executed, otherwise character
    appears on command line. E.g., F9 func MF [go to text, type ‘n’,
    press F10, then numerals 7461. Tilde appears over ‘n’.
    [Nota Bene only, not XyWrite]
MG Current message - not activated in NB 6  {DF MG=} [default]
MI Switch from Overstrike to Insert mode until a cursor key is pressed.      [function]
MK Toggle display of format markers and line ending markers. [function]
mkdir Make directory [immediate command]
MR 1/0 Metric ruler on/off   {DF MR=0} [default]
MS Designate that a mouse is installed - Assigned to key 105. [function]
    (why would one want to change/use this?)
MT TOC marker [embedded command]
MT 1/0 Military time on/off (military time=24-hour clock)  {DF MT=0} [default]
MU Scroll text and cursor up one line. [function]

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      119



MV Move currently selected block of text to cursor position. [function]
MW Microsoft Windows functions (do ‘func mw’, then enter 2-letter code): [function]
 ac Cascade all text windows
 ah Split all text windows horizontally
 ar Tile all text windows
 av Split all text windows vertically
 cb Display contents of Windows Clipboard
 cl Close text window
 cp Copy selected text to Windows Clipboard
 cu Cut to Windows Clipboard
 hh Display help on using Help files (Windows Help)
 hi Display Help Index (Nota Bene Help)
 mn Minimize NB screen
 pa Past text from Windows Clipboard
 mv Display 4-headed arrow to move NB screen
            (minimizes NB at top lhs of screen; dragging enlarges it)
 mw Move window
 mx Maximize NB screen
 pa Paste text from Windows Clipboard
 pl Paste link (doesn’t seem to do anything)
 pr Display information about Windows printer driver
 ps Paste special
 qu Quit
 rm Restore text window to maximum size
 rs Restore NB screen to previous non-max|min size
 rw Restore file
 sf Repaint the screen (doesn’t seem to do anything)
 sl Scroll left
 sr Scroll right
 sw Size document window
 sz Display 4-headed arrow to move text window
 wf Make current text window full screen
 wi Minimize text window
MX Type in mode at cursor - same as M0, but does not get inserted [function]
    in programs. 
MY Magnify (specifies point size & typeface in dialog boxes) {DF MY=8,Helv} [default]
MZ Type text in bold italic, or make selected text bold italic.         [function]

NB Designate selected block of text as unbreakable. [embedded command, function]
NC Move cursor to next character. [function]
ne or new Create a new file (to open an unnamed file, use ‘ne’  [immediate command]
    without argument)
    Switches:
    ne/100        opens new file  in expanded view
    ne/#            where # is any recognised display type, opens it in that
                       display type (but ne/0 doesn’t work: use ne/100 instead)
                       (See ‘dt’ above for other switches) 

120                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



nep New program file (valid but unneeded in NBWin; use ‘ne’) [immediate command]
NF Move cursor to first line of next printed page. [function]
NF 1/2/3 No footnotes, set 1/2/3 - turn off printing of footnotes [embedded command]
NI No index - prevent index from printing [embedded command]
NI Prevent key from being passed to DOS (used in some  [function]
    keyboard assignments in NB DOS, but not in NB Win) 
NJ Justification off [embedded command]
NL Move cursor to start of next line. [function]
NM No markers - hide format markers and line ending markers [function]
NM 0/1 No modification: protected block off / on. Inserts NM1 at  [embedded command]
    beginning of block, NM0 at end. To make block
    unprotected again, delete codes in Draft or Show Codes View
NN x  Generic Wild Card - the next character is the wild card. [function]
    Wildcard is inserted at cursor position, either on command line
    or in text.  To put it in text, go to command line, type  ‘func nn’
   + letter or number, then place cursor in text and press F10
      Switches:
 - (minus sign) negation wildcard
 numbers 0 through 9 numeric (repetition) wildcards
 A full stop (ascii-46) sentence separator wildcard- E (finds only full stops)
 Ascii-17 Ascii-13 (carriage return) wildcard ’  (view in Show
  Codes View)
 Ascii-25 down arrow Ascii-10 (linefeed) wildcard -
 Ascii-27 CrLf (carriage return+linefeed) wildcard (also
   produced  by executing func WC); Ascii 27
  produces a B, which turns into a left arrow on
  the command line, but does not find CrLfs. Func
  WC produces a � (view
  in Show Codes View), which also produces a left
  arrow on the command line, but does find CrLfs.
 A alphanumeric wildcard
 L letter wildcard
 N number wildcard
 O logical OR wildcard.
 S separator wildcard
 W variable-string wildcard
 X variable-character wildcard
     (also produced by executing funcs WA, WL,
     WN, WS, WW and WX)
NO No operation - used in keyboard files as dummy assignment [function]
     when beginning a key assignment that inserts text
now Time as text in file [immediate command]
NP Move cursor to start of next paragraph. [function]
NS Next style (invokes next style when working with styles)  [embedded command]
    (needs testing by someone who uses styles)
NS Move cursor to start of next sentence. [function]
NT Move cursor to the next tab position without inserting a tab  [function]
      (not in Page Layout View)

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      121



NT Annotation [embedded command]
    Switches:
 /0  General (NT/0)
 /1  Comment (NT/1)
 /2  Instruction (NT/2)
 /3  Argument (NT/3)
 /4  Drafting Tip (NT/4)
 /5  Query (NT/5)
 /6  Ibidem (NT/6)
 /7  Orbis: Status (NT/7)
 /8  Orbis: Keywords (NT/8)
 /9  Style Manual (NT/9)
NU Delete selected text, without saving it for possible later undelete. [function]
NW Move cursor to start of next word. [function]
NW # Automatic windows {DF NW=3} [default]
 To change permanently, change the default in NB.DFL.
    ‘d NW=0 and ’‘d NW=3’: calling file removes on-screen directory;
    abandoning  a file or directory does not leave blank window.
    ‘d NW=1’ and ‘d NW=5’ make directory persistent when file called;
    abandoning a file or directory does not leave blank window.
    ‘d NW=2’  and ‘d nw=4’ make directory persistent; abandoning a
    file or directory leaves blank window (not untitled file) on screen.
NX Move cursor successively through all open windows. [function]

O1 0/1/2 Specifies how NB handles screen/printer font mismatches in  [default]
      Page Layout View  {DF O1=1}
 0=use printer font widths and do error correction between words
 1=use printer font widths and do error correction between characters
 2=use screen font widths and do error correction at the end of the line)
OB 1/0 Overstrike beep on/off   {DF OB=1} [default]
OD 0-7 Offset display. ‘d od=0’ hides onscreen margins; ‘d od=2’   [default]
    displays them
    ‘d od=4 displays margins as grey hatching.
    {DF OD=32} (My default is 32, but the information I found
    (perhaps  written for XyWrite) gives only 0-7)
OF Offset for right and left pages {DF OF=1IN,1IN}  [embedded command, default]
OL Enter outline level, 1-9 [embedded command, function]
oln Change outline to Outline View [immediate command]
OP Access the previously accessed Menu/Help/dialog frame
    (works with some frames, not others) [function]
OP # Orphan (min. no. of lines of a para allowed at [embedded command, default]
    bottom of page)  {DF OP=3}
OR 0/1 Orientation portrait / landscape  [embedded command]
order Sort a directory (e.g., ‘order d,r’ to sort  [immediate command]
    in reverse date order)
    Switches
    f  to sort by filename
    e  to sort by extension

122                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



    d  to sort by last saved date and time
    s  to sort by size
    p  to sort by path name
    r  to sort in reverse order (used in addition to other modifiers)
    h  to add a header on top of directory
OS 0/1 One-sided printing off / on [embedded command]
outline Change outline to Outline View [immediate command]

p Pause (approximately 1 second) [immediate command]
PC Move cursor to the previous character. [function]
PD Scroll down one screen. [function]
pe | pev Undo redlining, without or with verification [immediate command]
PF Put field (Ibidem .FOR files and XyWrite mailmerge) [embedded command]
 (not tested)
PF Move cursor to first line of previous printed page. [function]
pfunc or Enter function code into file from command line [immediate command]
  pfun
PG Start new page  [embedded command]
    Switches:
    PG #IN (or LI) - forces break at x IN/LI, etc.)
    PG E/O - new page if on even page / odd page  
PL Page length (e.g. ‘PL32LI’) [embedded command]
PL Move cursor to start of previous line. [function]
PN Page number [embedded command]
PP Move to start of previous paragraph. [function]
PR… Prompt [embedded command]
print Print  [immediate command]
    Switches (note compulsory commas):
    ,#-#  page range, e.g., ‘print ,3-6’
    /  broken page range, e.g., ‘print ,2-10/16/30-50
    - (at end of last number) print to end of file, e.g., ‘print ,2-’
    /#  multiple copies, e.g., ‘print/2’ to print 2 copies
 ,e and ,o even and odd pages, e.g., ‘print ,e’ to print all even pages
 Switches can be combined, e.g., ‘print ,2-10/15,30-,e’
print @ Print a group of files (see NB Help) [immediate command]
printf Write printer file FO.TMP to disk [immediate command]
program New program file (unneeded in NBWin; use ‘ne’) [immediate command]
    (XyWrite)
PS Previous style (invokes previous style when working [embedded command]
     with styles)
PS Move cursor to start of previous sentence. [function]
PT Move cursor to previous tab position. [function]
PU Scroll up one screen. [function]
PV… Put value of text macro [embedded command]
PW Page width {DF PW=85DI}  [embedded command, default]
PW Move cursor to start of previous word. [function]
PX Character used for visible page break  {DF PX=45} [default]

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      123



Q2 Finish command started with BX, or finish call to Help routine [function]
    started with functions BX, JM or JH
QC (in NB.DFL) {DF QC=0} Flag setting cursor movement in  Hebrew,  [default]
   Arabic, etc. (whether arrows move left/right or next/previous)
QL Move cursor left one space (to previous line if at beginning) [function]
QR Move cursor right one character (to next line if at end) [function]
quit Quit NB (prompts to save unsaved files) [immediate command]
qs Change directory (same as cd) [immediate command]

R0-9 R0 to R9: Enter the ascii character associated with the number(s). [function]
    If using more than one R+ number in keyboard table, note that multiple
    R# assignments require a terminating func NO:
       ##=R2,R6,R5,NO
RB Delete the word before the word the cursor is on. [function]
RC Read character (allows user input from keyboard [embedded command]
    in programs
RC Delete character under the cursor. [function]
RD Delete selected block of text. [function]
rd or rmdir Remove directory (it must be empty, and not the [immediate command]
     current directory)
RE Delete text from cursor to end of line. [function]
re or read Open file for reading only [immediate command]
REC Refer to chapter number  [embedded command]
REC # Refer to chapter number # [embedded command]
red on/off Toggle redlining on/off [immediate command]
REF # Refer to footnote or counter number # [embedded command]
REL Refer to label [embedded command]
remove Remove contents of one phrase-library phrase  [immediate command]
ren or Rename a file [immediate command]
  rename
REP # Refer to page number # [embedded command]
RF Running footer [embedded command]
RFA Footer, all pages  [embedded command]
RFE Footer, even pages  [embedded command]
RFO Footer, odd pages  [embedded command]
RG Case: [embedded command]
 RG or RG 0 upper and lower as typed
 RG 1 caps, ignore shift state
 RG 2 lower, ignore shift state
 RG 3 small caps
 RG 4 caps and small caps
RH Running header [embedded command]
RHA Header, all pages  [embedded command]
RHE Header, even pages  [embedded command]
RHO Header, odd pages  [embedded command]
RK Read Key - Toggle Record Keystrokes mode on and off  [function]
    (executes each command recorded, unlike function TS.)

124                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



RK Read character (Note: not ‘read and uppercase’, as in [embedded command]
      NB DOS). Goes with RX.
RL Delete line the cursor is on. [function]
RM # Right margin (obsolete) (# is inches or other unit from margin) [embedded command]
rmdir Remove directory (it must be empty, and not the [immediate command]
     current directory)
rmvdup Removes duplicates in sorted list [immediate command]
RN Round off numbers -   {DF RN=0} (of  line count on status line) [default]
RO 1/0 Turn redlining on/off. [function]
RP Delete paragraph the cursor is in. [function]
RS Delete sentence the cursor is in. [function]
RS Record separator  {DF RS= }  [default]
RT 0/1 Relative tabs off/on (establishes tabs relative to  [embedded command]
    left margin and gutter 
run Run XPL program [immediate command]
RW Delete word the cursor is on. [function]
RX Execute the last set of keystrokes you recorded. [function]

S- Displays last command on command. line [function]
S1  Acute accent (func s1,[letter to be accented], e.g., ‘func s1,e’) [function]
S2  Grave accent [function]
S3  Umlaut [function]
S4  Circumflex [function]
S5  º accent [function]
S6 Tilde  [function]
S7 Underline (doesn’t work in NB Win) [function]
SA Save file [function]
sa or save Save file  [immediate command]
sa/ne Save under new name, switch to new version  [immediate command]
    (old version remains on disk)
sa %x Saves contents of phrase x to a file named X.SAV. [immediate command]
  (See Appendix of CPG, ‘SA%’
sad  Save selected (defined, highlighted) text to new file: [immediate command]
    ‘sad [filename]’  Same as ‘savedef’,‘savesel’ and ‘sas’
sad/ne Save define and switch to new version of file [immediate command]
sas Save defined text (same as ‘sad’) [immediate command]
salib Save phrase library (NB: doesn’t save associated .LIX [immediate command]
    comment file)
savedef Same as ‘sad’ [immediate command]
savesel Same as ‘sad’ [immediate command]
SC Superscript mode for footnotes {DF SC=SU} [default]
SD Space between text/footnote {DF SD=xIN, or xLI, etc.} [default]
se | sea Search  - sea= absolute (match case)  [immediate command]
    Switches:
 se/e |string| searches in elements (as well as body of file)
 se/f  |string| puts the cursor on the first letter of the found string.
 se/w |string| finds string only if it's a self-contained word.

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      125



 se/s  |string| limits the search to selected text (defined block).
    If cursor is outside block, block is searched from beginning to end.
    If cursor is inside block, block is searched from cursor location to
      end of block.
 se/t |string| starts search at top of file
 se/#  |string| ‘se/3 |string| finds the third instance of string (you can
     substitute any number).
searcha Search absolute (same as ‘sea’) [immediate command]
searchb Search backwards (same as ‘seb’) [immediate command]
searchba Search backwards absolute (same as ‘seba’) [immediate command]
se[/c] range|string|   Search directory - searches through a series of file  [immediate command]
                names separated by commas (range) for the text (string).
             ‘searcha’ and ‘sea’, ‘searchba’ and ‘seba’, can also be used
             You must do search from blank window; do:
             F9 ne F10 before executing search command.
             Switch:
              /c tells  program to count  number of times  string
                 appears, but not to stop at each match.
             (Doesn’t work for me)
seb | seba Search  backwards  - seba= absolute (match case)  [immediate command]
sec Inserts fixed time in text with hours, minutes and seconds [immediate command]
SF 1/2/3 Set footnote style and number in set 1/2/3 [embedded command]
    sf#,1          decimal numbers (default)
    sf#,I          uppercase Roman numerals
    sf#,i           lowercase Roman numerals
    sf#,A         uppercase letters
    sf#,a          lowercase letters
SG x or # Insert text or run program from phrase key x or # (XyWrite) [function]
sg1926=4((in NB.DFL) [default]
sg1927=3 (in NB.DFL) [default]
sg1928=1 (in NB.DFL) [default]
sg1700=0 Define type  (in NB.DFL) [default]
sg1701=1 Quote type  (in NB.DFL) [default]
sg1984=1 (in NB.DFL) [default]
SH # Snake height (sets depth of columns for snaking columns; [embedded command]
    # is the depth)
SH Show Help. Displays the top-level menu (On key Right Alt—98)  [function]
    (examples in XYWWEB.U2)
SI Switch to Insert mode (from Overstrike). [function]
SK  Show single phrase-library phrase (‘func sk’; then, when prompted, [function]
    strike alphanumeric for phrase whose contents you want to know)
SL Save all open files in all windows. [function]
SM Add the number the cursor is on to the total [function]
SN #,#,#  Snaking columns - ‘sn x,y,z’, where x,y,z are the [embedded command]
    locations (in your default measurement unit) where
    you want columns of text to begin,  e.g., ‘SN 0,3.25,5’
SO Check spelling of a single word. [function]
sort Sort selected text. [immediate command]

126                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



sortd Sort list in [filea] alphabetically, and put sorted list in [fileb],  [immediate command]
    leaving [filea] intact - ‘sortd [filea],[fileb]’
SP Set page number (sp #) [embedded command]
    Arguments: is this right word?
    sp#,1   decimal numbers (default)
    sp#,I    uppercase Roman numerals
    sp#,i    lowercase Roman numerals
    sp#,A   uppercase letters
    sp#,a    lowercase letters
SP Switch to page-line view. [function]
spell Spell check [immediate command]
   Switches - to check:
   all elements                    /e
   all footnotes                  /fn
   specific footnote series  /fn=1 or /fn=2 or /fn=3
   all notes                        /nt
   specific note series        /nt=1 or /nt=2 or /nt=3 etc.
   headers                         /rh
   footers                          /rf
SS Save style [embedded command]
SS Turn on Program mode. [function]
ST Set numeric keypad to numbers  (doesn’t work in NB Win) [function]
ST 1/2 Show tab character - 1=expanded view, 2=draft view, 3=both {DF ST=0}   [default]
st or store Store file   [immediate command]
st/nv Store file without verification [immediate command]
SU… Subroutine [embedded command]
SV… Save value as literal [embedded command]
SV  Save selected block of text to phrase-library key of next [function]
    character typed
SX… Save expression [embedded command]
SY Display a list of synonyms for the word the cursor is on. [function]
SZ Type (font) size  - e..g., ‘sz 12pt’ {DF SZ=13PT} [embedded command, default]

TB 0/1 Tabs-to-spaces on/off - 0 converts tabs to spaces when printing, (i.e.,  [function]
   tabs are spaced as they appear on screen); 1 closes up the gap, so that
   tab(s) appear as one space. Most users will want TB 0.
TC Tabs clear (from marker forward) [embedded command]
TE Insert a new row of entries in a table [function]
TF Move cursor to top of the file. [function]
TF Top of form setting  {DF TF=0} [default]
TG Toggle between expanded view and the view previously displayed.      [function]
TI Toggle between Insert and the active Overstrike mode. [function]
TL Move cursor one column to left in table. [function]
TM Time in text (code; updates) [embedded command]
TN Toggle numeric lock  (doesn’t work in NB Win) [function]
TO Toggle between Character Overstrike and Insert mode. [function]
today Date in text (hard text, does not update) [immediate command]

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      127



topcmd Places embedded command at top of file, [immediate command]
    e.g., ‘topcmd ts 1in,2in,3in’
TP Toggle between Page Layout View and view previously displayed [function]
TP Top margin for header text, body text  [embedded command, default]
    {DF TP=3DI,7DI}
TR Move cursor one column to the right in a table. [function]
TR Tab reset (resets tabs to user’s default settings) [embedded command]
tree Displays directory tree of drive , as in NB DOS, (but with     [immediate command]
    rows of ‘Ä’s instead of the lines that displayed in NB DOS)
TS Toggle Program mode [function]
TS Tab set   [embedded command, default]
    {DF TS=.5in,1in,1.5in,2in,3in,4in,5in,6in,7in,8in,9in,10in}
TW Switch between Insert mode and Word Overstrike mode. [function]
TW Text width (e.g. ‘tw 4.5in’) NB DOS command;;  [embedded command, default]
     NB Win version is PW. {DF TW=0in}
TX +/-        mark changes when Track Changes is on. TX+ indicates an  [embedded command]
  addition/insertion. TX- indicates a deletion.TX ends either region

UA 0/1 How defined text is handled - 0=NB DOS-type persistent selection;  [default]
     1= Windows-type transient selection {DF UA=0}
UB Use border (around text) [embedded command]
uc Uppercase character under cursor or defined block [immediate command]
UD Restore last text deleted, or activate undelete stack dialog box     [function]
UF Use Typeface  {DF UF=Times New Roman}  [embedded command, default]
UH Sets horizontal unit of measure  {DF UH=in,in} [default]
UI Turns on buttons, format bar, and other user interface features:   [default]
 1 CommandLine
 2 StatusLine
 3 Buttons
 4 FmtBar
 5 Ruler
 6 MenuBar
 7 HorizScrollBars
 8 VertScrollBar
 9 CommandLinePosition
 10 StatusLinePosition
 11 ButtonsPosition:
 {DF UI=1,2,1,1,0,1,0,1,1,2,0}
UL 0 Underline everything [embedded command]
UL 1 Underline all but tabs [embedded command]
UL 2 Underline all but tabs and spaces [embedded command]
UL 3 Underline only text [embedded command]
UM 0/1 Unhide/hide mode markers. ‘d UM=1’ makes them appear   [default]
    as triangles in Draft view and squiggles in Page Layout View.
    {DF UM=0}
UN Paste copy from clipboard. (In NB Lingua, an invalid [function]
     «XAEnglish» code is inserted as well as the text.)

128                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



UP Use page border [embedded command]
UP Delete spaces between cursor and the first non-space  [function]
    character to the left
US Use style (as set by ss command) [embedded command]
UV Sets vertical unit of measure  {DF UV=li,li} [default]

VA # Value of variable - shows current value for [embedded command]
     variable/setting #  (see variables list)
VB Invokes a Visual Basic routine? (appears in NBMAIN-X.AUX) [function]
VD Scroll down one screen [function]
VU Scroll up one screen. [function]

WA Wild alphanumeric - any single letter/number [function]
WA Length of time tooltips are displayed (18=1 sec)  {DF WA=36} [default]
wait Wait for process to finish (programming). Forces program to  [immediate command]
    wait until preceding command finishes before continuing to
    execute. Used after commands such as PRINT, SAVE, COPY,
    which can generate disk activity of an indeterminate duration.
wc | wcb Word count forwards/backwards [immediate command]
WC Carriage-return wildcard (can be used in searches) [function]
WD Widow - minimum number of lines of a paragraph [embedded command, default]
    allowed at top of page  {DF WD=3)
WF Makes text wraps to fit window (with DT=0, 1 or 9)  {DF WF=1} [default]
WG Switch text to [pre-NB8] Draft View (no Page-Line indicators). [function]
window # ‘Window #’ goes to window no. # (0-9) [immediate command]
    ‘window #,[left top,width, length]’ goes to window no. #
        and defines its size:
           left is the column number of the left border (0-80)
           top is the line number of the top border (0-22).
           width is the number of  columns wide for text (1-80).
           length is the number of lines of text (1-22).
WL Wild letter  - any single letter [function]
WN Wild number - any single number [function]
WN 0/1 Auto-renumber window: 0=transient window numbers;   [default]
    1=fixed window numbers, NB DOS style  {df WN=1}
WO Word overstrike  {DF WO=1} [default]
WS Wild separator (any single separator) [function]
wt Wait (same as ‘wait’) [immediate command]
WT Line weight (borders) [embedded command]
WW Wild within - find up to 80 characters (must be used with at [function]
     least one character; see Operators section.
WX Wild any character - any single character letter, number, separator [function]

CPG  Chapter 8: Codes that work in Nota Bene for Windows                                      129



WX Windows extended characters  {DF WX=Dutch,Swiss,Courier10,,} [default]
 serif
 sanserif
 monospace
 script
 decorative
WZ Switch to Page Layout View

X1-X9 TOC/index markers #1 - #9 [embedded command]
XC Execute command that is currently on command line. [function]
XD Release selected block of text, or close and save command window [function]
   (func xd will close a footnote or formatting window - same as
    striking F3)
XD Sets directory to read-only  {DF XD=0} [default]
XH Remove any currently displayed Menu or Help screens from view. [function]
  (This is now, in combination with function AR, on the Ctrl key in all
     keyboard states; you can expand an abbreviation by pressing Ctrl.)
XM Move cursor to middle of line [function]
XM Display page-line number and time on status line  {DF XM=*PL*TI} [default]
XN 1/2/3/ Transpose text - 1, 5 &6=character; 2=word; 3 sentence; 4=paragraph [function]
  4/5/6 Transposing characters:
    XN1 - If cursor is on a character, transposes current and previous characters
     If cursor is on a separator, transposes the two characters preceding
     the cursor
    XN 5 - transpose current and previous characters
    XN 6 - transpose the twocharacters preceding the current character.
       These can be set in a keyboard file, e.g., ##=XN,5
XP Switch text to expanded view. [function]
XS… Extract (parse) string [embedded command]
XT 1/0 Display/hide message when cursor is on a marker  {DF XT=1} [default]
XT Remove entire contents of on-screen file [function]
  (Is this what this is meant to do, or just a by-product?)

YD Release selected text, but don’t close a command window [function]
    (contrast XD)

ZC 1/0 Allow/don’t allow upper and lower case for spelling  {DF ZC=1} [default]
ZM Zoom page to ##% width  {DF ZM=100} [default]
zoom ## Zoom - enlarge/reduce window by ## percent [immediate command]
ZS Point size (sets point sizes displayed in list box for scalable fonts) [default]
    {DF ZS=6,7,8,9,10,11,12,14,16,18,20,22,24,30,36,48,72,96,120,144}

130                                       CPG  Chapter 8: Codes that work in Nota Bene for Windows



 Compendium ofXy4/XyWin/NBWin Variables

R.J. Holmgren  5/6/98 LastRev.3/31/06

You can obtain formatting information or the value of DeFaults by entering the 
appropriate VA command on the command line. E.g., to see the "value" (name) of the cur-
rent typeface:
 VA/NV UF<cr>
The value of << VAUF>> (VAriable UseFont), i.e. the name of the typeface at that cursor 
position, is displayed on your PRompt line.

Some VAriables report both DeFault values, i.e. those specified at startup, and current 
values, e.g. << VANW>> and << VA$NW>> (VAriable NewWindow). However, many 
others  use the same two-letter identi f ier but have dif ferent meanings,  e.g .  
<< VAET>> (ElementTop) and << VA$ET>> (ElapsedTime)

A few current VAriable values are not displayed, because they are illegal in one or more 
of the word processors in the XyWrite family, and trigger serious problems.

VA @100 -1  Contents of S/G 100...
VA @1999 -1  ...Contents of S/G 1999
VA @*1 -1  Current << CP>>  CharPos 

[*0001]
VA @*5 -1  Last CoPied|MoVed Text 

[*0005]
VA @*11 -1  Re c or d ed  K e ys t ro k e s  

(func RK) [*000B]
VA @*26 -1  First (or most recent) 

r u n n i n g  p r o g r a m  o r  
frame [*001A]

VA @*27 -1  Second running program 
or frame [*001B]

VA @*29 -1  ? Next running program 
o r  f r a m e  [ * 0 0 1 D ]  
(increments)

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             131

Note for NB users:This list comes from the file XyWWWeb.INF, which is part of the big 
XyWrite programming library XyWWWeb.U2. You can download the latest version of 
XYWEB###.ZIPat the XyWWWeb site: http://www.serve.com/xywwweb/
Files in the zip were written by Robert J. Holmgren and Carl L. Distefano; Robert 
Holmgren compiled the VAriable list. He has has kindly given me permission to post 
this standalone version of the VAriables Compendium.
I have not tested these variables in Nota Bene, except for those I myself use in 
programs, but Robert has removed those that he knows cause trouble in NB.
Note that the second column shows you the current settings of your variables.
It is easier to read this file onscreen in Draft View, without markers: Shift F9, then Shift 
F10 to toggle through views.  ——Mary Bernard April 2006

http://www.serve.com/xywwweb/


VA @*31 -1  ? [*001F]
VA @*213 -1  Second LDPM program not 

a s s i g n e d  t o  a  k e y  
[*00D5] (decrements)

VA @*214 -1  First LDPM program not 
a s s i g n e d  t o  a  k e y  
[*00D6]

VA @*248 -1  &0 LDPM program [*00F8] 
(increments to...

VA @*257 12 BC se //CL � . . . & 9  L D P M  
program [*0101]

VA @*265 -1  &A LDPM program [*0109] 
(increments to...

VA @*290 -1  . . . & Z  L D P M  p r o g r a m  
[*0122]

VA @*13841 -1  Current running program 
frame [*3611]

VA @*13843 -1  KBD layout [*3613]
VA @*13844 -1  First MeNu file selec-

tion [*3614]
VA @*13845 -1  Second MeNu file selec-

tion [*3615] (incre-
ments)

VA @*13853 -1  ? [*361D]
VA [it 0 Additive MoDe On (e.g."IT") at 

current << CP>> 
VA \902 "Select a style first." Error Message 902
VA \@01  Error Message from S/G, e.g. 

<< SX01,<< VA$ER>> >> 
<< PR\@01>> 

VA !01 255 Flag Value (initialization type) 
f o r  S / G :  0 = $ t r i n g  
(SV|SX), 2=SUb, 4=SX 
value, 16=expression 
e v a l u a t e s  F A L S E ,  
24=expression evaluates 
TRUE, 255=nonexistent

VA ”01 0 S/G Contains Only Numbers 0|1=Yes
VA |01 -1 Size of S/G
VA *ul 1 MoDe number of MoDe mnemonic, e.g. 

<< MDUL>> 
VA _bc Ctrl+E (First) Location of keyboard 

assignment, e.g. BC 
VA œ13 thirteen  (Xy4 adds " dollars")
VA <m1#u1  U n i t  o f  M e a s u r e  C o n v e r s i o n  

(<measure#unit), e.g.
VA <PT#2IN 144 PoinTs/2 inches (72pt/in)
VA <m1]va  V A r i a b l e  e x p r e s s e d  i n  

Measure(<measure]variab
l e )  ( " ] " = s y s t e m  
default), e.g.

VA <PT]SZ 13,13 PoinT SiZe, 1st and 2nd elements

132                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA <m1va  V A r i a b l e  e x p r e s s e d  i n  
Measure(<measurevariabl
e) (without "]"=current 
value), e.g.

VA <PTSZ1 12 PoinT SiZe, 1st element only or
VA <INIP 0,3.6,0 ( w h e r e a s  s t a n d a r d  

< <  V A I P > >  = 0 , 3 . 6 , 0 
e x p r e s s e d  i n  D e c i -
I n c h e s  
[=<< VA<DIIP>> ])

VA command# 3.6 Value of Command Element, where 
"command"=embedded com-
m a n d  o r  d e f a u l t ,  
"#"=element within com-
m a n d ,  e . g .  
<< VAIP2>> =3.6

VA (cmdname,var COURIER NEW V a l u e  o f  
N e s t e d  C o m m a n d :  
"cmdname"=BOlabel|FAlab
el|FM12or3|IGfilename|S
Sstylename,"var"=variab
le|element|keyword to 
s o l i c i t ,  e . g .  
<< VA(SSCompendium,UF
>> ="COURIER NEW"

VA �dfbit  Bit status within default setting, 
w h e r e  " d f " = d e f a u l t  
name, "bit"=value to 
check; 0|1=On, e.g. 
<< VA�HD4>> =1

VA {var è GC variable value
VA =filename,$tring= << VA=C:\AUTOEXEC.BAT,SET PATH=>>  

Search String: returns 
t e x t  b e t w e e n  
<cr>search$ and next 
< c r >  ( E O L ) ,  e . g .  
"<< VA=G:\XY4\XYWWWEB.R
EG,Comspec_W2K= >> " 
r e t u r n s  
"C:\WINNT\SYSTEM32\CMD.
EXE"

VA ^mm  Document Information: Summary Item
VA ^AU  - Author
VA ^CD  - Creation date
VA ^CM  - Comments
VA ^CT  - Creation time
VA ^KY  - Keywords
VA ^LG  - Last revisor
VA ^MD  - Modified date
VA ^MT  - Modified time
VA ^PJ  - Project Number
VA ^RP  - Retention Period
VA ^RV  - Revision Number

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             133



VA 1A 0 I g n o r e  E n d - o f - F i l e  M a r k e r  
0|1=ignore EOF byte 
(Ascii-26)

VA $1A 0 Ignore End-of-File Marker
VA 1O 0,0 ? (NB)
VA 1X 3 ? (NB)
VA $1X 3 ? (NB)
VA 3D 1 T h r e e - D i m e n s i o n a l  E f f e c t s :  

appearance of dialog 
b o x e s  0 = 2 D | 1 = 3 D  
(Windows)

VA $3D 1 T h r e e - D i m e n s i o n a l  E f f e c t s  
(Windows)

VA $AC 0 Auto-Correct 0|1=On
VA AE 1 ? (NB)
VA $AE 1 ? (NB)
VA AF 0,0 ? (NB)
VA AH 0 Allow Hyphenation
VA $AH 0 Allow Hyphenation
VA AL 1 Automatic Leading
VA $AMMoDe  Available MoDes (BI|BO|IT) in cur-

r e n t  t y p e  f a m i l y  
(0|1=available):

VA $AMbi 0 Bold Italic
VA $AMbo 0 BOld
VA $AMit 0 ITalic
VA $AN 1 NBWin: Display command brackets as 

0=Registered symbol 
{&reg} and long macron 
{&macr} (i.e. ANSI 1252 
c o d e s  
174/175)|1=<< >> (ANSI 
171/187) [immediate 
command D AN=#]

VA AOP C:\NB\AUTOSAVE\AUTOSAV1.TMP AutOsave Path
VA AOT 1,1 A u t O s a v e  T i m e r  ( m i n [ , m a x  

d e f a u l t = m i n + 5 ]  i n  
minutes)

VA AP 0 Auto-Pause
VA $AR 0 Auto-Replace 0|1=On
VA $AT 0 ATtribute value returned by last 

A T T R I B  c o m m a n d  
(0=R/W|1=RO)

VA AX 256 ? (NB)
VA $AX 256 ? (NB)
VA AZ 0 Counter Numbering Style: 0= ... x 

y z aa bb cc ... xx yy 
zz aaa bbb ...; 1= ... 
x y z aa ab ac ... ax 
ay az ba bb bc ..

VA $AZ 0 Counter Numbering Style
VA BC 0 ?
VA $BD 0 BaD Words
VA BF 0 Bottom Footnote

134                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA BG 255,255,255 BackGround color
VA BI 0 Beep Inhibit: 0|1=Display any 

format� without error 
beep

VA $BI 0 Beep Inhibit
VA BK 1 BacKup Files 0|1=keep BAcKups
VA BL 28 BLank Lines; NB: Base Line
VA BM 1 ? (NB)
VA $BM 1 ? (NB)
VA BN 0,0,0,0,0 B u t t o N  D e s c r i p t i o n :  

F a c e , W i d t h , H e i g h t  
(where Face is 0=Pic-
ture, 1=Text, 2=Both) 
(Windows); ? in Xy4

VA $BN 0,0,0,0,0 ButtoN Description (Windows); ? in 
Xy4

VA $BQbo 0 Border Query 0|1=definition is 
present

VA BS 1 Backspace Control
VA $BS 1 Backspace Control
VA BT .5,.5,.5,.5 Bottom Margin
VA $BT 0 Black and White Trace: value of BW 

command
VA BW 26707 Black and White (for CGA monitors) 

0|1
VA $BW 1 Monitor Type: Black and White 

0|1=Color
VA BX 

0,0,5,63856,0,0,0,0,1,1,0,0,0,10,0,22355,26707,25697,30575,0,30,0,0,21352,21591,12611,26624,22355,17236,50,21352,21591,13123,26624,22355,17236,52,46,9695,53,9695,60
 Window Border 
Colors

VA $BX 
0,0,5,63856,0,0,0,0,1,1,0,0,0,10,0,22355,26707,25697,30575,0,30,0,0,21352,21591,12611,26624,22355,17236,50,21352,21591,13123,26624,22355,17236,52,46,9695,53,9695,60
 Window Border 
Colors

VA BZ 0 Select Displayed Button Set 
(Windows)

VA $BZ 0 Select Displayed Button Set 
(Windows)

VA $C# 0 NB: C#=0-9 CodePage default(?)
VA $CA (none) Cartridges currently loaded
VA CB 0,4096 Correction Beep: Xy4 values are 

frequency,duration; NB 
0|1=Off

VA $CB 0,4096 Correction Beep
VA CF 1 Change Footnote Separator: 0Äuse 

s e r i e s  1  s e p a r a t o r  
(even if no series 1 
notes); 1Ästart with 
separator for first set 
of notes used

VA $CF 1 Change Footnote Separator
VA CH 0 ?
VA $CH 0 ?

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             135



VA CK 3 Spelling Checker: 0|1=ignore words 
that contain a number

VA $CK  Spelling Checker
VA $CL C:\NB\QSHCOASB.TMP      Command Line 

last issued (40 chars 
max)

VA $CM 
                                                                                
  Current con-
tent of CoMmand Line 
(80 chars max)

VA $CN  Cartridge INstalled (Xy4)
VA CO 0 COlumns
VA $CO 0 COlumns
VA $CP 850 Operating System Code Page (cf. 

LAnguage DeFault)
VA CR 1,0,0,5,255,0,0 Cursor Type
VA $CR 
 
 Carriage Return character(s)
VA CT 0 ?
VA $CT 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
 Column Style: 
name of style used for 
c u r r e n t  c o l u m n  ( i f  
specify << VA$CT5>> , 
returns style used in 
5th column)

VA CV 0 C h a n g e  V e r i f i c a t i o n  P r o m p t  
0|1=Confirm CHange com-
mands

VA $CV 0 Change Verification Prompt
VA CW 60 Value of Margin Units MU (set in 

PRN)
VA $CW 60 Value of Margin Units MU (set in 

PRN)
VA $CX 18 Cursor Column Position
VA $CY 0 Cursor Row Position
VA $CZ 0 DDE Conversation Number: value of 

highest conversation 
currently active

VA D1 0,5 D e l e t e  S t a c k :  #  o f  
entries,min.chars con-
sidered deletable unit

VA $D1 0,5 Delete Stack
VA $DAd.Mmmm.yyy 16.July.2006 Embed in text; 

d i s p l a y s  d a t e  i n  
s p e c i f i e d  
<< VA$DAformat>> 

VA DB 0,0 Debug a Program
VA $DB 0,0 D e b u g  a  P r o g r a m :  S t o p  o n  

0|1=<< IF|2=<< LB|4=JM 
|8=<cr>|16=<< ER>> ,Ign
ore 0|1=<cr>|2= |3=both

VA $DC 0 Define Column currently selected 
0|1=yes

136                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA DD 8 Display Selected Blocks
VA $DD 8 Display Selected Blocks
VA DE ?D Define "Soft" End-of-Line Charac-

t e r s  V A D E 1  
( ? ) = a c t u a l | V A D E 2  
(D)=visual

VA $DE 0 Define Ended 0|1=yes
VA $DF 0 DeFine Status 0|1=currently 

selected
VA $DG C:\NB\NB.DLG DialoG File location
VA DH ­ Discretionary "Soft" Hyphen
VA $DH ­ Discretionary "Soft" Hyphen
VA DI 1,6,0 Long DIrectory Display x,y,z 

(x=filesize divisor; 
y=lines of text dis-
played; z=0|1 (remove 
<cr>s)

VA $DI 0 DIrectory Type in current window
VA $DK 1023932928 NB: Date of "K"reation, current 

file: octal date+time
VA $DL C:\NB\USERS\DEFAULT\NB.DFL DeFauLt File 

Location
VA $DN 0 Define ENd << CP>> 
VA $DO 0 DOcument Information attached to 

file 0|1=yes
VA DP . Decimal Point (USA="." Europe=",")
VA $DP C:\NB\INBOX\CPG\CPG.NB D i r e c t o r y  P a t h  i f  

<< VA$WS>> =2; other-
wise=<< VA$FP>> 

VA DR C:\NB\ DRive:\Path\ for Temporary Files
VA $DR  F i l e  a t  c u r s o r  p o s i t i o n  i n  

currently-displayed 
DiRectory

VA $DS 0 Define Start << CP>> 
VA DT 4 D i s p l a y  C u r r e n t  T y p e  

(0|1|2|4|8|9|10|12|17|1
8|20)

VA $DT 4 Display Type
VA DU 60 Display Units
VA $DU 60 Display Units
VA $DV C Current DriVeletter
VA DY 0,0 Dye: activate color printer con-

trol codes
VA DZ d Mmmm yyyy Date Format of DA and TODAY com-

mands
VA $DZ d Mmmm yyyy Date Format
VA EB 0,36864 Error Beep
VA $EB (none) Error Beep
VA EC 0 ?
VA $ED C:\NB\SWSYS.DLL XyWrite Editor location
VA EE 0,0 Element End Margin Offset
VA EF 0 Special EFfects (immediate com-

mand)

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             137



VA EG 0 IBM EGA Control: 0=25 lines, 1=43 
lines B&W, 2=43 lines 
Color

VA $EG 0 EGA Control
VA EH 0 Error Help
VA $EH 0 Error Help
VA EJ 0 Eject Last Page: 0Äleave last page 

in printer/1Äeject last 
page

VA $EJ 0 Eject Last Page
VA EL 0 Extra Leading on current line, in 

I N c h e s * P o i n T s / I N c h  
(e.g. 0*72)

VA $EL 0 ELement ID: internal ID of the 
last element clicked on

VA EP 0,1,1,0,0,0,0,0,0 Error Prompt: DEL, TY 
DeFined-block, TY dir, 
ABort, func SA, del 
deltas, screen:printer 
font mismatch [Added in 
NB: replace with COR-
RECT command in batch 
spell, Search/Replace]

VA $EP 0,1,1,0,0,0,0,0,0 Error Prompt
VA $ER 214 Last ERror Number
VA ES 0 Enable Scoping (apply format com-

mands from <CP>=0, cur-
r e n t  p a r a g r a p h = 1 ,  
replace previous=2)

VA $ES 0 Enable Scoping
VA ET 0,0 Element Top
VA $ET 8939126 Elapsed Time since ZT issued, else 

current time in format 
hh:mm:sec.hundredths. 
Broken in NB

VA EU .,:,; EUropean Punctuation
VA $EU .,:,; EUropean Punctuation
VA $EX NB Current File .EXtension
VA F2 0 ? (NB)
VA $F2 0 ? (NB)
VA $FA 0 Frame Attribute: internal ID of 

last frame clicked on
VA $FB 1 File Begin: cursor at TOF 0|1=yes
VA FC FL Current value of FL|Flush Cen-

ter|FR
VA $FC 0 Font Count: how many fonts avail-

able in current printer 
file

VA FD 11 Form Depth
VA $FE 0 File End: cursor at EOF 0|1=yes
VA FF 0 Form Feed
VA FG 0,0,0 ForeGround color
VA FH 0,0,0,0 Format Bar Height (Windows); ? in 

Xy4

138                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA $FH 0,0,0,0 Format Bar Height (Windows); ? in 
Xy4

VA $FI[/F] CPG.NB Current FIlename [/F=long filename 
NB]

VA FL FL Current value of Flush Left|FC|FR
VA $FM  Forms Mode: is current file a 

form? 0|1=yes
VA $FP C:\NB\INBOX\CPG\CPG.NB Dri ve: \Pa th\ Cur ren t  

Filename
VA FQ  Format Bar Queue: items to be dis-

played on format bar 
(Windows)

VA $FQ  Format Bar Queue: items to be dis-
played on format bar 
(Windows)

VA FR FL Current value of FL|FC|Flush Right
VA $FR 0C Last FRamename called
VA $FS 1 File Status: 0=no files open; non-

zero=at least 1 file 
open

VA FT 0 Footnote Transition
VA FU 1,3 Footnote Unit
VA $FU 1,3 Footnote Unit
VA FV 0 ? (NB)
VA $FV 0 ? (NB)
VA $FW 0 Full Screen Window: status of 

window (0=not FS|1=FS)
VA FX ? Field Separator in data files
VA $FX 1 Fixed Pitch=0|Proportional=1 (cur-

rent font)
VA $FY sixteen Font FamilY for current font 

1|2|3|4|5
VA FZ DDD.MMM.YY File Date format in DIRectories
VA $FZ  Field Separator
VA GA MD Graphic Adapter
VA $GA MD Graphic Adapter
VA GB C:\nb\support\debug\SWGS.LIB Global Library 

file location (Windows)
VA $GC 0 GCI Status
VA GG  Location of U5 file (General 

Counsel)
VA GH 6 ? (NB)
VA $GH 6 ? (NB)
VA $GMformat Mode Status in format, e.g.
VA $GM1 1 Printing a file
VA $GM2 0 Waiting for a + to continue print-

ing
VA $GM8 1 Insert mode On
VA $GM16 0 Waiting for printing
VA $GM32 0 Printing suspended
VA $GM64 1 Message is displayed
VA $GM128 0 Spell or search has highlighted a 

string

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             139



VA $GM256 0 Automatic Uppercase On
VA $GM2048 0 Format bar being built
VA $GM4096 0 Sets internal flag for redisplay-

ing a page
VA $GM8192 0 Running program
VA $GM16384 1 Executing BX function
VA GP  Graphics Drive:\Path\ (Xy4)
VA $GP  Graphics Drive:\Path\ (Xy4)
VA GU 0,.1 GUtter (current value)
VA GV 0,0,0,0,0,0,0 Graphics Variable (set 

in PRN file)
VA $GV 0,0,0,0,0,0,0 Graphics Variable
VA GW 0 ? (NB)
VA $GW 0 ? (NB)
VA GX 

0,0,255,255,0,0,255,0,0,255,0,255,0,128,0,0,255,255,255,255,0,128,0,255,0,255,0,128,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 ?

VA $GX 
0,0,255,255,0,0,255,0,0,255,0,255,0,128,0,0,255,255,255,255,0,128,0,255,0,255,0,128,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 ?

VA GZ 0 ? (NB)
VA $GZ 0 ? (NB)
VA HB 0 Header Wildcard color (3rd element 

of L1 command)
VA $HB 112 Header Wildcard color
VA HD 764 Xy4: Fixed drives; NB: unknown 

numeric value
VA $HD 764
VA HI %F Header info
VA $HI << VA$HI>>  Header info
VA HL 0 Help Construction
VA $HL (none) Help File location
VA HM 0 ?
VA HN 7 Header Normal display mode (2nd 

element of L1 command)
VA $HN 7 Header Normal display mode
VA $HP  Hewlett-Packard Printer File 

loaded 0|1=Yes (Xy4)
VA HR 112 Header Reverse display mode (for 

CM) (1st element of L1 
command)

VA $HR 112 Header Reverse display mode
VA HS 16 ? (NB)
VA $HS 16 ? (NB)
VA HT  Header title (DocInfo) (Xy4)
VA $HT  Header title
VA HV 6,3,3 Hyphenation Values
VA $HV 6,3,3 Hyphenation Values
VA HY 1 Hyphenation 1=On (responds only to 

embedded << HY1>> , not 
to "d hy=1")

VA $HY C:\NB\USERS\DEFAULT\MAIN.HYP H y p h e n a t i o n  
dictionary file (Xy4)

VA ID  ? (NB)

140                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA $ID 0 ? (NB)
VA $IG 3 Import Graphics: number of IG com-

mands in current file
VA II 0 I t a l i c  I n f o r m a t i o n  

font=0|attribute=1
VA $II  I m a g e  I n f o r m a t i o n :  r e t u r n s  

information about an 
image (compression, 
color, depth, width and 
height)

VA IM  Image Mode Printing
VA $IM 2 Image Mode Printing
VA $IN 0 Cursor Inside Define 0|1=yes
VA IO 0 D o c u m e n t  I n f o r m a t i o n :  

0|1=On|2=Enter comments
VA $IO 0 Document Information
VA IP 0,3.6,0 Indent Paragraph; 3rd param (Xy4) 

is right indent
VA IT 519,1543,8193,264,1543,8193,0,1 Insert Cursor 

Type
VA $IT 519,1543,8193,264,1543,8193,0,1 Insert Cursor 

Type
VA IU 0 Information MenU 0|1=store file 

after clearing DocInfo 
dialog box

VA $IU 0 Information MenU
VA IW 0 ? (NB)
VA JB 0 Send PC Codes at Job Begin
VA $JBPCCode# 0 Job Begin PC code# set 

by a JB command, e.g. 
<< VA$JB34>> returns 
0|1=specified

VA $JC 1 Number of Journal entries in file 
(Windows)

VA JE 0 ? (NB)
VA JL 1 Justify UnderLine Characters
VA $JL 1 Justify UnderLine Characters
VA JR 1 Journaling: 0=update existing 

journals|1=maintain 
journals but do not 
save|3=create journals 
for new files (maintain 
& save)

VA $JR 1 ? (NB)
VA $JS 31 Size of Journal in bytes (Windows)
VA JT 0 Justification Type
VA $JT 0 ? (NB)
VA JU JU JUstification|NJ
VA JZ 1 Job End 0|1|2|3
VA $JZPCCode# 0 Job Element 0|1=active 

setting for PC Code 
r a n g e ,  e . g .  
<< VA$JZ120>>  (Xy4); ? 
NB

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             141



VA $KB C:\NB\USERS\DEFAULT\NEW.KBD KeyBoard File 
location

VA KC 0,0 Key Click
VA $KC 41 Key Code
VA KP 0 (In NB: Special KayPro laptop=1)
VA $KP 0 (as above)
VA $KR 0 Keystrokes Recorded: number of 

keystrokes saved
VA KS 0,0 Keyboard [cursor] Speed
VA $KS 0,0 Keyboard [cursor] Speed
VA L0 112,7,1,7 Menu bar color control
VA $L0 112,7,1,7 Menu bar color control
VA L1 112,7,112,15 Command line color control
VA $L1 112,7,112,15 Command line color control
VA L2 112,112,112,176,224 Status line color con-

trol
VA $L2 112,112,112,176,224 Status line color con-

trol
VA L3 7,112,7,15 Ruler line color control
VA $L3 7,112,7,15 Ruler line color control
VA L4 15,112,1,7,15 Pull-down menus color 

control
VA $L4 15,112,1,7,15 Pull-down menus color 

control
VA LA English,A LAnguage: Xy4 current Code Page 

value 437|850; NB lan-
g u a g e  n a m e  
(e.g.<< LAEnglish>> )

VA $LB 0 ? (NB)
VA LC ¶ Line End Character
VA $LC ¶ Line End Character
VA $LE 0 ? (NB)
VA LF 0 (May be NB only & disabled in 

XyWrite; performs like 
VAWF)

VA $LF 0 (as above)
VA LG 1 Logic state (GC)
VA $LG Mary Logged-On User
VA LH 67,85,60 Low-High super/subscript control 

for Speedos
VA $LH 67,85,60 Low-High super/subscript control 

for Speedos
VA $LI C:\NB\SUPPORT\DEBUG\TEXT.LIB LIbrary file 

(NB)
VA $LK 0 ? (NB)
VA LL 0,0 Line Leading
VA LM .1 Left Margin
VA LN 0 ? (NB)
VA $LN 9.43 Current Line Number in P-L mode
VA $LO  Previous logical condition at same 

level as current level 
(GCC)

VA LQ 0 Letter Quality 0-9

142                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA LR 1 Left-to-Right Mode (for Hebrew 
etc) L2R=1;R2L=0

VA LS .25 Line Space
VA $LT 1 Logon Notes Toggle
VA $LV 0 ? (NB)
VA LX  Main LeXicon path (LEXAM) (Xy4)
VA $LX  Main LeXicon path (LEXAM)
VA $LV 0 Current level of display (GCC)
VA LZ Mmmm d, yyyy Format Redlining Date
VA $LZ Mmmm d, yyyy Format Redlining Date
VA MA 40 # of chars to Find MAtch
VA $MA 40 # of chars to Find MAtch
VA MB 0 Message Box display location 

(0=status line, 1=mes-
sage box) (Windows)

VA $MB 0 Message Box
VA MC 0 Minimum Size to Add Command to 

Stack: threshold mini-
mum size (Windows)

VA $MC 0 Minimum Size to Add Command to 
Stack (Windows)

VA MD NM Current Character MoDe
VA ME 1 MEnu editing for deltas 0=command 

window|1=dialog box 
(Windows)

VA $ME 65525 Available MEmory
VA -M-  Main Dictionary memory
VA -e-  Expanded Dictionary memory
VA $M+ 65437 Memory Used by XyWrite
VA $M+0 65437 All XyWrite memory
VA $M+1 65211 All Code memory
VA $M+2 65165 All Overlays memory
VA $M+3 47 Root memory (cseg)
VA $M+4 65391 Editor code data memory
VA $M+5 372 Data memory
VA $M+6 4 Save/Gets program memory
VA -P1 65475 Load program memory
VA -M1  Load file memory
VA -P2 372 Math/Program program memory
VA -M2  Math/Program file memory
VA -P3 10 Spell program memory
VA -M3  Spell file memory
VA -P4 41 Help program memory
VA -M4  Help file memory
VA -P5 1 Hyphenation program memory
VA -M5  Hyphenation file memory
VA -P6  Sorting program memory
VA -M6  Sorting file memory
VA -P7  Printing program memory
VA -M7  Printing file memory
VA -P8  Graphics program memory
VA -M8  Graphics file memory
VA -P9 1 Directory program memory
VA -M9  Directory file memory

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             143



VA -pa 1 Load printer program memory
VA -ma  Load printer file memory
VA -pb 1 Search program memory
VA -mb  Search file memory
VA -pc 1 Redline memory
VA -pd  Box drawing memory
VA -pe  Call/Save memory
VA -pf 3 Counters memory
VA -pg  Memory manager memory
VA -ph  Command table memory
VA -pi  Menus memory
VA -pj 1 Error messages memory
VA -pk 1 WYSIWYG memory
VA -pl 1 Styles memory
VA -pm  Soft fonts memory
VA -pn  Image memory
VA -po 1 VGA memory
VA -pp  HGC (Hercules) memory
VA -pq  CGA memory
VA -pr  Network memory
VA -ps  GCI memory
VA -pt  Scaling memory
VA -pu  Rasterizer memory
VA -pv  RFT:DCA Import memory
VA -pw 12 RFT:DCA Export memory
VA MF 255 Mode for Forms
VA $MF 255 Mode for Forms
VA MG  Current MessaGe
VA $MG  Current MessaGe
VA MH 59 ? (NB)
VA $MH 59 ? (NB)
VA MK 0 ? (NB)
VA $MK 0 ? (NB)
VA $MN (none) MeNu File location
VA $MO 0 File MOdified 0|1=yes
VA MR 0 Metric Ruler
VA $MR 0 Metric Ruler
VA MS 60 Microspace Factor
VA $MSmd  Mode Status:
VA $MS1 0 Document Information dialog box 

displayed on STore|SAve
VA $MS2 0 Scroll Lock on
VA $MS4 0 No file open
VA $MS8 0 [Not used]
VA $MS16 0 Text selection started and NOT 

ended
VA $MS32 0 Selected text is on screen AND 

ended
VA $MS64 0 File open for read only
VA $MS128 0 Command window open
VA $MS256 0 Redlining on
VA $MS512 0 Directory displayed
VA $MS1024 0 Current file has never been saved

144                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA $MS2048 0 Current file has been edited since 
last saved

VA $MS4096 0 I n s e r t i o n  p o i n t  i n  f i l e  
(text=0|header=1)

VA $MS8192 0 Column selected
VA $MS16384 1 Current file includes Document 

Info (0=Yes|1=No)
VA $MS32768 0 REVIEW.TMP file (created by 

PRINTS|TYS) displayed
VA MT  Military Time 0|1=Use MT
VA $MT 0 Military Time
VA MU 60 Margin Unit
VA $MU 60 Margin Unit
VA MW 0 Maximize Windows
VA $MW 0 Mouse Window number (current loca-

tion of mouse) (Xy4)
VA MX 67 RAM committed to DICT.SPL
VA $MX 0 Mouse X pixel|row position (Xy4)
VA MY 8,Helv MagnifY Dialog Boxes: specify SZ 

a n d  W i n d o w s  f o n t  
(Windows)

VA $MY 0 Mouse Y pixel|row position (Xy4)
VA $MZmd  Mode Status:
VA $MZ1  Forms mode
VA $MZ2  Put block cursor on menu
VA $MZ4  Don't put accelerator on `TC'
VA $MZ8  We are creating a new file
VA $MZ16  Set indicates we were editing a 

previously entered com-
m a n d  i n  a  c o m m a n d  
window. Cleared means 
we are entering a com-
mand for the first time

VA $MZ32  Need to read the bottom of the 
file

VA $MZ64  Tabular row define
VA $MZ128  Tabular column define
VA $MZ256  Screen in a menu or help screen
VA $MZ512  Menu is a sidebar
VA $MZ1024  No borders on screen
VA $MZ2048  Window has accelerators
VA $MZ4096  Radio button
VA $MZ8192  List box or list directory
VA $MZ16384  We can edit this menu
VA $MZ32768  Window is part of dialog box
VA $NA 0,0,0,0 Non-Printable Area
VA NB 0 ?
VA NC 1 Normal Carriage Return
VA $NC 0 ?
VA ND 65535 Network Drives
VA $ND 65535 Network Drives
VA NE 0 No Errors from Printer: 0|1=ignore 

spurious errors
VA $NE 0 No Errors from Printer

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             145



VA $NF 0 ? (NB)
VA NI 0 No Index: suppress printing of 

indices
VA NJ JU No Justification|JU
VA NL  Network Login Path
VA $NL  Network Login Path
VA NM 0 No Modification Mode: 0|1=text 

m a r k e d  w i t h  
<<  N M 1> >  . .. < <  NM 0 > >  
c o m m a n d s  c a n ' t  b e  
changed

VA NP 0,120 No Pause
VA $NR 1 No Ruler (Xy4)
VA $NU  UNused Printer Memory (Xy4)
VA NW 1 New Window
VA $NW 1 New Window: 0=no auto windows; 

1=auto, no ABort if 
CAll in DIRectory dis-
play; 3=auto, ABort if 
CAll in DIRectory dis-
play

VA NX 0 ? (NB)
VA $NX 0 ? (NB)
VA O1 25601 Options: Error correction between 

screen<>printer fonts
VA $O1 25601 Options
VA OB << VAOB>>  Overstrike Beep 0|1=On (Xy4)
VA $OB << VA$OB>>  Overstrike Beep
VA OC 0,1707 OCtagon Control: define shape of 

radio buttons (Windows)
VA $OC 0,1707 OCtagon Control
VA OD 2 Offset Display 0-7
VA $OD 2 Offset Display
VA OE  Open Editor on LAN 0|1=Keep Editor 

o p e n  a f t e r  r e a d i n g  
shared code (faster 
performance)

VA $OE 0 Open Editor on LAN
VA OF 1,1 OFfset
VA OH 1 ?
VA $OH 1 ?
VA OL 0 OutLine Fonts Drive:\Path\
VA $OL 0 OutLine Fonts Drive:\Path\
VA OM 31 O l d  M a s t i c o n  ( P C L E X = 0 ;  

Microlytics=31)
VA $OM 31 O l d  M a s t i c o n  ( P C L E X = 0 ;  

Microlytics=31)
VA $OO 0 Command Override On 0|1=On (Xy4)
VA OP 3 Number of lines for OrPhans
VA OR 0 ORientation
VA OS 1 One-Sided Printing (can also embed 

<< OS0>> |<< OS1>> )
VA $OV C Overflow File Drive (if overflow 

file exists)

146                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA $P?PCCode# 0 P ?  r e t u r n s  1  i f  
s p e c i f i e d  P C  c o d e  
exists in PC table, 
e.g. << VA$P?120>> 

VA P. 14 Truncated Path
VA $P. C:\nb\inbox Truncated Current Drive:\Path Name 

(14 chars max)
VA $P\ C:\nb\inbox Current Path, add Backslash "\" in 

Root Directories
VA $PA C:\nb\inbox Current Drive:\Path
VA $PB 1 Bottom Depth defines command con-

trolling text length 
( 0 = P a g e  L e n g t h  
PL|1=Bottom Margin BT)

VA $PCPCCode# 1 P C  r e t u r n s  1  i f  
s p e c i f i e d  P C  c o d e  
exists in PC table, 
e.g. << VA$PC34>> 

VA $PC 1 PC Code returns 1 if specified PC 
code exists in PC table

VA PD 0 Pad Spaces
VA $PD 0 Pad Spaces
VA $PE << VA$PE>>  Page Elements: number of page ele-

ments in current file
VA $PF (none) Current Printer File (SETP) selec-

t i o n :  $ P F 1 = p o r t # ,  
$ P F 2 = f i l e n a m e ,  
$PF3=description

VA $PF7 1 Current SETP setting (number only)
VA PG 0,0,0 ?
VA $PG 147 Current Page Number in P-L mode
VA PK 255 Page Break Color
VA $PK 255 Page Break Color
VA PL 10.5,10.5,10.5 Page Length
VA PM 0,0,0,0,100,0 Printer Memory (set in 

PRN file)
VA $PM 0,0,0,0,100,0 Printer Memory
VA $PR (none) Printer File location
VA PT 0 Numeric Print Type
VA PW 8.25 Page Width
VA PX 45 Page Break Character
VA $PX  Page Break Character
VA $PXPCCode#  In Dialog Box only: PC 

Code Explanation
Quote Type  N B . I N I  [ G e n e r a l  S e t t i n g s ] :  

0|1="Smart" Quotes
VA QC 0 ? (NB)
VA $QC 0 ? (NB)
VA $QF 1 ? (NB)
VA R2 8 Mouse Double Click
VA $R2 8 Mouse Double Click

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             147



VA $RA 0 Read Attribute displays absolute 
n u m b e r  o f  c u r r e n t  
character MoDe

VA RB 0 Reverse Buttons
VA $RB 0 Reverse Buttons
VA $RC 0 Resume Code (response to BR|WM 

commands: 0=first valid 
key, 1=second valid 
key,...; 65533=Gray-
E n t e r ;  6 5 5 3 4 = F 9  o r  
Ctrl+Break; 65535=Esc)

VA RD 1,14,250,0,249 Redline Data
VA $RD 1,14,250,0,249 Redline Data
VA $RE 0 0|1=Read-Only File
VA RG 0 ?
VA RI 5 Mouse Repetition Interval
VA $RI 5 Mouse Repetition Interval
VA $RK 0 Record Keystrokes 0|1=On
VA RL ??û?pù????????�? Ruler Markers
VA $RL 0 Redlining 0|1=On
VA RM 0 Right Margin
VA RN 0 Round Off Line Numbers to nearest 

.5 in Page-Line display 
0|1=On

VA $RN 0 Round Off Line Numbers
VA RO 17996 ? (NB)
VA $RO LFDECOTFTEBF ? (NB)
VA RP 1 ? (NB)
VA $RP  ? (NB)
VA $RR 0 Return eRRor from DOS if shell 

with DO command
VA RS ?? Record Separator in data file
VA $RS  Read Character at cursor position
VA RT 1 Relative Tabs
VA RX 8 Ratio for X Direction
VA $RX 8 Ratio for X Direction
VA RY 8 Ratio for Y Direction
VA $RY 8 Ratio for Y Direction
VA RZ 10000 Record SiZe (max chars for data 

files)
VA $RZ 
 
 Record Separator in data file
VA SB  ?
VA $SB 0 Scalable Fonts available 0|1=Yes
VA SC 247 Superscript Footnote Numbers
VA $SC 1577 Scan Code of last key pressed
VA SD .166 Separator Depth (spacing between 

text & note separator): 
0-put out current line 
spacing before separa-
tor [use only if you 
have modified printer 
driver]; 1-use fixed 
(single) line spacing 
before separator

148                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA $SD D,R Sort Directory
VA $SE  / SEarch $tring last sought
VA $SF (none) Soft Font List File
VA SG 0 Assign Save/Get,$tring
VA $SG C:\NB\USERS\DEFAULT\ORD.LIB M a c r o  L D S G T  

File location
VA SH 0,0,0 ?
VA SI 96,96 Screen Resolution
VA $SI 96,96 Screen Resolution
VA SK 1,80 Sort Key: 0=letter-by-letter 

("Newark" before "New 
York"); 1=word-by-word 
( " N e w  Y o r k "  b e f o r e  
"Newark"); 2=reverse 
sort; 4=delete dupes; 
n2=number of chars to 
sort

VA $SK 1,80 Sort Key
VA SL 25 Screen Length
VA $SL << VA$SL>>  Screen Length (Xy4); Item in list 

box has been selected 
0|1=1 item (Windows)

VA SM 0 Show Menus
VA $SM 0 Show Menus: menu currently dis-

played 0|1=Yes
VA SN 0 Snaking Columns
VA $SN 0 ? (NB)
VA SO F1 Sort Order Setting
VA $SO F1 Sort Order Setting
VA SP 1,0,49 ?
VA $SP C:\NB\USERS\DEFAULT\SHORT.SPL Personal Dic-

tionary location
VA SQ 0 Sequential Page#: 0=respect SP 

command; 1=override SP 
and use actual pages in 
text

VA $SQ 0 Sequential Page#
VA $SSStyle# IX Style name defined in 

d o c u m e n t ,  e . g .  
<< VA$SS2>>  returns 
2nd style

VA $#S COMPENDIUM Current Style name
VA ST 3 Show Tabs (0|1|2|3)
VA $ST C:\NB\NBSTART.INT STARTUP.INT location
VA ?ST  NB: Command STack
VA SW 0 Screen Width
VA $SW 0 Screen Width
VA SY  SYmbol Set (Xy4)
VA $SY  SYmbol Set for current font
VA SZ .166,.166 SiZe: point size of font in use

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             149



VA TB 0 T a B  C o n t r o l  0 = e x p a n d  a s  
s p a c e s | 1 = o u t p u t  
directly

VA $TB  TaB Character
VA TE 0 ? (NB)
VA $TEn 0 Type Effect: status of different 

bits set with the EF 
printer file setting 
0|1=On

VA TF 0 Ignore Top Margin
VA $TF 0 Ignore Top Margin
VA TL C:\nb\support\debug\TEXT.LIB Text Library 

(NB)
VA $TL 1 ? (NB)
VA $TM 6:59 PM Current TiMe
VA TO 0 (Time function of some sort)
VA TP .3,.3 Top Margin
VA $TP 0 Current Cursor Position [NB]
VA TR 864,1800,2520,3240 T a b  S e t t i n g s  

( 1 . 2 , 2 . 5 , 3 . 5 , 4 . 5 )  
m e a s u r e d  i n  p o i n t s  
(72/")

VA $TR LB TRiangle Mnemonic: display command 
embedded in delta

VA TS 1.2,2.5,3.5,4.5 Tab Settings
VA TW 0 ? (Xy4); Text Width [NotaBene 

(=<< VARM>> )]
VA $TW 0 T e x t  W i n d o w  c o m m a n d  w i n d o w  

0=text|1=window|2=heade
r, footer, frame, foot-
note

VA TX 0 T r i a n g l e  S u p p r e s s :  
0=show|1=display con-
tiguous deltas as one

VA $TX 1 Cursor Location: 0=Header|1=Text
VA $U1 (none) U1 File
VA $U2 C:\NB\XYWWWEB.U2 U2 File
VA $U3 (none) U3 File
VA $U4 (none) U4 File
VA $U5 (none) U5 File (Windows)
VA $U6 (none) U6 File (Windows)
VA $U7 (none) U7 File (Windows)
VA $U8 (none) U8 File (Windows)
VA $U9 (none) U9 File (Windows)
VA UA 1 User Access: treatment of DeFined 

t e x t  0 = X y 4 -
DOS|1=Windows (Windows)

VA $UA 1 User Access
VA UB 65535 ?
VA ]UD1  Use Main Dictionary (value of cur-

rent UD default)
VA ]UD2  Use Supplemental Dictionary (value 

of UD default)

150                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA UD  Use Dictionary (current applicable 
UD command)

VA $UDn  Use Signature PCLEX Dictionary:
VA $UD1 0 Medical
VA $UD2 0 Legal
VA $UD4 0 Computer terms
VA $UD8 0 Special
VA $UD16 0 Any Supplemental
VA UF COURIER NEW Use TypeFace
VA UH IN Units Horizontal (default measure, 

e.g. IN)
VA $UH IN Units Horizontal
VA UI 1,1,1,1,1,1,0,1,1,1,0,0 User Interface 

(Windows):
VA UI1 1 User Interface Command line is 

visible
VA UI2 1 User Interface 1=Status line is 

visible
VA UI3 1 User Interface 1=Button bar show-

ing
VA UI4 1 User Interface 1=Format bar show-

ing
VA UI5 1 User Interface 1=Ruler bar showing
VA UI6 1 User Interface 1=Menu bar showing
VA UI7 0 User Interface 1=Horizontal scroll 

bar showing
VA UI8 1 User Interface 1=Vertical scroll 

bar showing
VA UI9 1 User Interface 1=CMline Position
VA UI10 1 User Interface 1=PRompt line Posi-

tion
VA UI11 0 User Interface 1=Button position
VA $UI (none) XWUIF.UIF file location (Windows)
VA UL 0 UnderLine Setting
VA UM 0 Unhide MoDe Markers
VA $UM 0 Unhide MoDe Markers
VA UN 0 UNtitled File
VA $UN 0 UNtitled File
Unformatted Copy Clipboard  N B . I N I  

[Defaults]: 0|1=Text 
only

Unformatted Paste Clipboard  N B . I N I  
[Defaults]: 0|1=Text 
only

VA $UO  Use Outline Fonts 0|1=supported 
(Xy4)

VA UP 0 ?
VA UR 0 Use Rodent 0|1=Yes
VA $UR 0 Use Rodent
VA $US 0 U S - E n g l i s h  s w i t c h :  

0=native|1=English
VA UV IN Units Vertical (default measure, 

e.g. LI)
VA $UV IN Units Vertical

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             151



VA V3 0 ?
VA $V3 0 ?
VA $VA 0 ? (NB)
VA $VE V4.1 Version Number
VA VF 0 Variable Forms (0|1=use multiple 

lines)
VA $VF 0 Variable Forms
VA $VH 0 ? (NB)
VA $VI 0 T y p e  o f  G C  v a r i a b l e :  

0=words|1=numbers|2=dat
es|3 =calculations

VA $VL 0 ? (NB)
VA $VM 0 Vendor-Independent Messaging: 

0 | 1 = V I M - c o m p a t i b l e  
electronic mail system 
installed

VA $VN 0 ? (NB)
VA VO 1 ? (NB)
VA $VO 1 ? (NB)
VA VU 5,100,6 Vertical Units: min vertical move-

ments in 1/6",screen 
lines,decimal places in 
vertical formats

VA $VU 5,100,6 Vertical Units
VA WA 36 Error Message Wait Time
VA $WA 2 Window Availability
VA WB ??û?pù????????�? Window Border Characters
VA $WB ??û?pù????????�? Window Border Characters
VA $WC 0 Word Count from SPELL|WC|WCB com-

mand; number of CHanges 
made by CH|CI command

VA WD 3 Number of lines for WiDows
VA $WE 0 Where-Is-Error: displays location 

o f  e r r o r  " L e f t  
m a r g i n / i n d e n t  i s  
g r e a t e r  t h a n  r i g h t  
margin"

VA WF 1 Wrap-to-Fit (0|1=keep within cur-
rent borders)

VA $WF 3 Status of UWF command (printing 
m o d e  a n d  f o n t s  i n  
effect) 0|1|2 (Windows)

VA $WH 4294965855 WHere: location of insertion point 
(after BE/wh command)

VA ?WI 1 C:\NB\INBOX\CPG\CPG.NB
 W I n d o w  l i s t  
( < V A $ W N > s  a n d  
d:\path\filenames) (NB)

VA $WI  WIndow Parameters: dimensions 
(left,top,width,height) 
of the text window

VA WL 0 ?
VA $WL 0 ?

152                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA $WM  ?
VA WN 1 Window Handling Style: auto-

renumber=0; fixed num-
bers=1 (NB)

VA $WN 63 Window Number
VA WO 0 Word Overstrike all except: 

<cr>=0|...+space+tab=1|
...+separators=2

VA $WO 1 Windows Open
VA ?WP EPSON Stylus Photo 2100 on Ne01: N B :  C u r r e n t  

W i n d o w s  d e f a u l t  
Printername

VA $WP  Returns default printer driver, or 
(with args) corresponds 
t o  W P R O F  c o m m a n d  
( W i n d o w s ) :  
count,file,appname,keyw
ord (no args returns 
default printer device)

?WS windows sets
VA WS 0 Whole-Space Justification 0=par-

tial (micro) spaces|1
VA $WS# 1 W i n d o w  S t a t u s  ( 0 = n o  

file|1=file|2=dir):
VA $WS1 1 Window 1 Status
VA $WS2 0 Window 2 Status
VA $WS3 0 Window 3 Status
VA $WS4 0 Window 4 Status
VA $WS5 0 Window 5 Status
VA $WS6 0 Window 6 Status
VA $WS7 0 Window 7 Status
VA $WS8 0 Window 8 Status
VA $WS9 0 Window 9 Status
VA $WT 0 ? (NB)
VA $WV#  Windows Flag Values (Windows):
VA $WV1 19497 Protected mode
VA $WV2 19497 CPU 286
VA $WV4 19497 CPU 386
VA $WV8 19497 CPU 486
VA $WV16 19497 Standard
VA $WV32 19497 WIN286
VA $WV64 19497 Enhanced
VA $WV128 19497 WIN386
VA $WV256 19497 CPU086
VA $WV512 19497 CPU186
VA $WV1024 19497 Large frame
VA $WV2048 19497 Small frame
VA $WV4096 19497 80x87
VA WW  Conversion Filters Path (Xy4)
VA $WW  Conversion Filters Path
VA WX 0,0,0,0,0 Windows EXception Characters: 

associate Speedos with 
TT fonts

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             153



VA $WX#  Windows Font Family: display Bit-
stream font used for 
character substitution 
(Windows):

VA $WX1  name of serif Bitstream font
VA $WX2  name of sans serif Bitstream font
VA $WX3  name of monospaced Bitstream font
VA $WX4  name of decorative Bitstream font
VA XA 0 ?
VA $XA 0 ?
VA XC 12 Space Constant
VA $XC 12 Space Constant
VA XD 0 Read-Only Directories: 0|1=R/O
VA $XD 0 Read-Only Directories
VA XE 174 ? (NB)
VA $XE 174 ? (NB)
VA XF  EXtract Fields from data file with 

SORTD
VA XI 0 Swap Italics (Windows)
VA $XI 0 ? (NB)
VA XL  Selective Directory Listing
VA XM *PL*TI Transpose Messages: Order on 

PRompt line
VA $XM *PL*TI Transpose Messages
VA XN 300 ?
VA $XN 300 ?
VA $XP C:\NB\NBMAIN-E.AUX ? (NB)
VA XR  EXtract Records from data file 

with SORTD
VA XT 0 EXpand Triangles when cursor on 

delta=1
VA $XT 0 EXpand Triangles
VA $XW 6.25,6.25 TeXt Width
VA XX 0 ? (NB)
VA $XX 0 ? (NB)
VA XY  SCRFONTS.BIN Location (default)
VA $XY  SCRFONTS.BIN Location (Xy4); Full 

Screen Window dimen-
s i o n s  
(left,top,width,height) 
of application window 
(Windows)

VA $XZ 0 Status of Application Window: 
0 = w i n d o w  h a s  b e e n  
restored to previous 
size|1=minimized|2=maxi
mized

VA Y3 2 XyWrite 3+ compatibility mode=1
VA $Y3 2 XyWrite 3+ compatibility mode
VA YK 0 PRompt offset (Xy3+ only)
VA $YK 0 PRompt offset (Xy3+)
VA ZB 4 ?
VA $ZB 4 ?

154                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



VA ZC 1 Zero Capitalization 0|1=preserve 
case in spelling

VA $ZC 1 Zero Capitalization
VA ZD 0 ? (NB)
VA $ZD 0 ? (NB)
VA ZL 0 LaZer printer 0|1|2|3 (set in PRN 

file)
VA $ZL 0 LaZer printer
VA ZM 100 ZooM percentage
VA $ZM 100 ZooM percentage
VA ZO 0 ?
VA $ZO 0 ?
VA ZS 

6,7,8,9,10,11,12,13,14,16,18,20,22,24,30,36,48,72,96,120,144
 P o i n t  S i z e s  
for Scalable Fonts

VA $ZS 
6,7,8,9,10,11,12,13,14,16,18,20,22,24,30,36,48,72,96,120,144
 P o i n t  S i z e s  
for Scalable Fonts

VA ZX 1 Cancel eXpanded memory=1|0=use 
Xmem

VA $ZX (none) Cancel eXpanded memory (Xy4); ? 
(NB)

VA $ZZ &�B\AUTOSAVE\AUTOSAV1.TMP Miscellaneous 
functions, e.g. last 
questionable word found 
by speller or field 
name when attempt is 
made to delete a GC 
field

Dialog ListBox Lists:
?AG All Save/Gets in list
?AR ARea commands
?AS All Symbol Sets
?BB Button Barré (not used at 3/23/95)
?BM Button Macros
?BO BOrders
?BU BUttons used
?CA CArtridge list
?CD Cartridge Directory
?CM List of CoMmands
?DB List of Delete Blocks
?DC DDE Conversations
?DR List of DRives
?DZ Default siZe
?FB All items in Format Bar
?FN List of FuNctions
?FO FOnts
?FR Another FRame
?FU Format bar being Used
?GR GRoups in Global Library
?IB List of commands
?IG Includes

CPG  Chapter 9: Compendium of XyWrite/NBWin Variables                             155



?IX IndeX from a U1...U9 file
?JR File JouRnal
?LS LiSt of items from GC.INI
?MA MAcro Save/Gets A-Z, 0-9
?MT MaTch stuff for fonts
?OP OPerators for calc
?PC PCcodes
?PG ProGram being run
?PP Printer Files (SETP)
?PR PRinter queue
?RG Show ReGistration from OLE
?SB SymBol set
?SD 
?SG Save/Gets
?SK SK function (show a Save/Get)
?SP SPelling errors
?SS Styles
?ST Command STack
?SY SYnonyms
?SZ SiZe
?VR VaRiables for GC
?W2 
?WB 
?WI WIndow list
?WP Windows Printer driver
?WS Windows Sets

156                             CPG  Chapter 9: Compendium of XyWrite/NBWin Variables



Miscellany of XPL Information, chiefly by Carl Distefano

These are notes that I’ve excerpted over several years from an email correspondence with 
Carl Distefano about XPL programming. The information is his; the phrasing is sometimes 
mine, but more often his. A couple of entries are by others (noted). I have tested some of 
these suggestions, but not all.

-----------------------------------------------------------------------
Turn Auto-replace off
The function string AC,AZ,AZ in a keyboard table or program turns off auto-replacement. 
AZ turns it on again.
 ##=ac,az,az
 ##=az
or, in a program:
 AC AZ AZ   to turn it off; AZ to turn it on.

-----------------------------------------------------------------------
SG—Run all phrases from one key
Defining one key as
##=SG
enables you to run all your phrase-library keys from that one (##) key, freeing all the 
alphanumeric keys on your Shift+Alt keyboard for redefinition. You strike the ##=SG key, 
then the letter for the phrase you want, and the phrase is entered into your file (or run, if it’s 
a program).

It also has the advantage that you do not remove whatever is currently on the command line.

-----------------------------------------------------------------------
Func XH at head of files

There's hardly a program you can write for NB5 that won't benefit from a prefatory 
XH BX es 1Q2 .  Func XH removes any displayed menu or dialog box.

And always use BX ES 1Q2 . You don’t need to use ES 0 too - NB cancels the error-
suppression state when the program ends.

-----------------------------------------------------------------------
Value of the Wait variable (DF WA= in NB.DFL)
If you set it to 0 - programs with error messages execute faster. ‘The only reason to set it 
higher (and then only temporarily) is to debug programs that generate error messages that 
flit by too quickly to read. (Or if, like me, you want time to read ordinary error messages.) 
Each unit of 18 (set in Tools, Preferences, Prompts, Time that other messages are displayed) 
= 1 second.

CPG  Chapter 10: Miscellany of XPL Information                                              157



-----------------------------------------------------------------------
DX
Don't use DX as a matter of course [as one did in NB4], because it can destabilize some 
code (though this is pretty rare).  If you need to use DX, test your program thoroughly 
before and after introducing this function to make sure that DX isn't causing errors.
-----------------------------------------------------------------------
CH and CI
Are identical in NB5, and mean ‘change invisible’.

-----------------------------------------------------------------------
Commenting string
Use the string:
;*;
to make comments within programs, not LaBels; and not comments after an «EX». A 500-
word comment after an «EX» can slow a program up by 15%.

A comment is defined as anything from the ;*; symbol to the next carriage return.  The ;*; 
symbol can also be used to create discrete "lines" of XPL (as <<LB CR>>s could in NB4).

-----------------------------------------------------------------------
Opening an unnamed file (e.g., as a temp file for programming purposes)
You don't need to name a file to open a temporary window.  BX neQ2 (no filename) opens 
an Untitled file.
BX ne/100Q2  opens it in eXPanded view.
BX ne/#Q2 , where "#" is any recognized DT value, opens the window in that display type.  
(On this formula, ne/0 should open the window in eXPanded view, but for some odd reason 
it doesn't work.  You need ne/100.)

-----------------------------------------------------------------------
Search Switches

/F -  puts the cursor at the beginning, rather than the end, of the found string
/T -  search from top of file regardless of cursor position
/S - confine the SEarch or CHange operation to selected text, i.e., a DeFined block
/n -  (where n stands for any number) find the nth instance of the search string.  Thus, SE/3 
"man" finds the third instance of "man" (counting from the cursor position).
With Change commands (CH, CI, and CV), switch /n has a different meaning: it limits the 
number of changes to the specified number.  In other words, CH/3 |man|men| will only 
change, at most, the next three instances.

Good idea to get used to using double quotes, " " as search delimiters, so that strings that 
include switches can be used.

-----------------------------------------------------------------------
Carriage Return wildcard
[View this  section in Show Codes View]
� or ^R. Use former for compatibility with Xywrite.
Input it by executing func WC

158                                              CPG  Chapter 10: Miscellany of XPL Information



-----------------------------------------------------------------------
Negation wildcard
[View this  section in Show Codes View]
-  or ^B.

Example 1: se "c-x" will find "c" followed by any character but "x".

Example 2: se/f "-� �-�" will find any CR that is neither preceded nor followed by a CR, 
thus making it possible to search for and eliminate single CRs at line ends in email files, 
while retaining the CR CR sequences that end genuine paras.

You cannot use the ‘CI’ or ‘CH’ commands with the negation wildcard -. You have to use a 
‘SE’ loop.

The keyboard file assignment [for the negation wildcard] is > "NN,-". <<

-----------------------------------------------------------------------
Guillemet [chevron/command bracket] wildcards -  ® and ¯
To input them from the command line, do: func << and func >>.  Or assign these functions 
to keys: nn=<< and nn=>>.

-----------------------------------------------------------------------
RK and branching
RK doesn't uppercase the input [as it did in NB4]; to do that, you need @upr().  The dif-
ference between RK and RC is significant.  RK captures the first character or function call 
assigned to a key in the keyboard file and discards the rest of the key assignment; if you 
direct <RK> to a Save/Get (), the effect is to discard the *entire* .KBD file assignment 
associated with that key. You can then do whatever you want with the keystroke. Typically, 
you use the key code (41) of the pressed key to branch to different parts of the program, or 
to disable the keystroke altogether.  Below, for instance, the program responds to Escape or 
Enter but nothing else:
[View this  section in Show Codes View]
;*;
;*;
;*;

In contrast, RC captures the first character or function assigned to a key, but allows any sub-
sequent characters or functions in the key assignment to execute -- unless you loop around 
and continue to capture (concatenate) them, something RK doesn't allow.  RC is appropriate 
when you want to capture and *give effect to* the user's assigned key assignments.  When 
you want to suppress them and substitute your own actions, use RK.

-----------------------------------------------------------------------
Operating on defined blocks in programs
[View this  section in Show Codes View. But first, try highlighting some nearby text and see 
what happens to the  0s 2 lines down.]
DZ  - closes a DeFined block if one is started, otherwise does nothing
0 - cursor position at start of DF block
0 - cursor position at end of DF block

CPG  Chapter 10: Miscellany of XPL Information                                              159



This segment:
/s
inserted in an change/search clause, will confine the operation to a defined block, if there is 
one. E.g.,

BX ci/s "but"butter"Q2 

will change all buts to butter in a define if there is one, or the whole file if not.

-----------------------------------------------------------------------
SA%
The basic command-line usage is SA %X, where X is a phrase that has content.
Without more, the contents of the phrase are saved to a file named X.SAV. (Any existing 
file named X.SAV is summarily overwritten.) However, you can specify a different 
filename, e.g., SA %A,MyPhraseA.txt (also overwritten if it exists).

Typically, in XPL, you'd test for existence of the file first (because, if it already exists, you 
may not wish to overwrite it!):

;*; Save the null string to phrase 01
«SV01,»
;*; Test for existence of file
BX exist d:\path\myfile.txtQ2
;*; If file does not exist
«IF«ER»
;*; Create the empty file and wait for it to be written to disk
BX sa %01,d:\path\myfile.txtQ2 BX waitQ2 «EI»

-----------------------------------------------------------------------
Appending to a phrase in programs
It's unnecessary to save text to a phrase in order to add it to an existing phrase.  Simply 
"quote" the additional text.  Thus:

<SX01,<IS01>+" gathers no moss.">;*; Full proverb

-----------------------------------------------------------------------
Echo phrase to prompt line
You can echo the contents of a phrase to the PRompt line:

<PR@01>;*; Proverb is displayed on PRompt line

Note: Default MB must be set to 0.  If default MB=1, the contents will display in a 
Windows message box which will persist on the screen until you press Enter or click on 
"OK".  This causes problems with programs that loop repeatedly through PRompt state-
ments.

160                                              CPG  Chapter 10: Miscellany of XPL Information



-----------------------------------------------------------------------
Prompt can mix text and phrase number
A PRompt may consist of text and a phrase number, as long as the phrase number comes 
last:

<PRHere is the proverb: @01>;*; Proverb with prefatory remark
-----------------------------------------------------------------------
Manipulate variables and values directly
System VAriables and VAlues can be manipulated directly.  It's no longer necessary to save 
the VA to a phrase:

<IF<VA$WS>==0><PRNo file is open><EX><EI>;*; Test for open file

-----------------------------------------------------------------------
New extensions to VA operator
There are several extremely important extensions to the VA operator:

Don’t use @siz(<IS01>) to get the length of a phrase. Use <VA|01>.

@siz(<IS01>) crashes if phrase 01 is uninitialized; <VA|01> doesn't; rather, it returns a 
value of -1 (useful information).

<VA” 01> tells you whether 01 contains a number (integer) or a string.  1=number; 
0=string

<VA!01> provides important information about the status of phrase
01.  If:

   VA!01=0,   phrase 01 contains a string
   VA!01=2,   phrase 01 contains SUbroutine
   VA!01=4,   phrase 01 contains a numeric expression
   VA!01=16,  phrase 01 evaluates to FALSE
   VA!01=24,  phrase 01 evaluates to TRUE
   VA!01=255, phrase 01 is not initialized

<VA@01> returns the first 77 characters of phrase 01, the whole phrase if the length is 77 
or less.  An extension to VA@ allows easy extraction of segments delimited by a separator.  
Suppose this:

   <SV01,Spring;Summer;Fall;Winter>;*; Data

Then <VA@01;1>=="Spring", <VA@01;2>=="Summer", etc.

-----------------------------------------------------------------------
ð Containment operator (replaces epsilon)
There's a new ð (Ascii-240) containment operator, which tersely reports whether one string 
"contains" another.  (The operator is the Ascii-240 character itself, not the number in curly 
braces.)  For example:

CPG  Chapter 10: Miscellany of XPL Information                                              161



<IF"Spring"{240}"pr"><PRYes><EX><EI><PRNo><EX>;*; Reports "Yes"
;*;
<IF"Spring"{240}"Pr"><PRYes><EX><EI><PRNo><EX>;*; Reports "No"

NB: The Contains wildcard, ascii 240: unlike ASCII 238, there is no numeric value associa-
ted with 240.  The statement <IS01>[240]<IS02> is either true or false; if true, it says noth-
ing about the *position* of 02 in 01. If you need to know the position, use epsilon.

----------------------------------------------------------------------
Count Up operator
There's a nifty Count Up operator that makes it easy to execute a segment of code a 
specified number of times.  Using it, you can time your programs like this:

  <SX01,10000>ZT <CUa,01>NO <LBa>;*; Count Up
  ;*;
  <SX01,"Done - Elapsed time: "+<VA$ET>><PR@01><EX>;*; Report elapsed   time

In the first line, everything between the <CU> statement and LaBel "a" (<LBa>) -- in this 
case, a simple func NO (No Operation) -- is executed the number of times stated in phrase 
01.  CU requires two elements, a delimiting LaBel name and a phrase which must contain 
the desired number of repetitions.  Note how compact the CU formulation is.  Also, if you 
translate the examples into live code and run them, you'll see that CU is significantly faster 
(on my machine, by a factor of 135%).

-----------------------------------------------------------------------
GT
GT can be used to put text on the command line as well as in text.  Thus,

<SV01,Hello, world!>BC <GT01><EX>;*; Put to command line
<SV01,Hello, world!>GT <GT01><EX>;*; Put in text

In Xy3 (possibly also NB3 and 4), PV was required to put text on the CMline.

-----------------------------------------------------------------------
Search for function codes
You can search for a particular function code by striking your Pfunc key (Ctrl ;) *twice*, 
then typing the 2 letters of the code you're looking for. For instance, to search for BC, strike 
Pfunc twice, then type bc. If there's a BC code in your file, the cursor will leap to it.

-----------------------------------------------------------------------
Save text to an sx phrase by enclosing it in double quotes.
«SX02,«VADR»+"COPY.TMP"» - you can save text to an sx phrase by enclosing it in dou-
ble quotes. [VADR is the dir that NB uses to create temp files.]

Double quotes can be used to refer to any string (i.e., anything that can be saved to a phrase 
wih SV, e.g., <SV01,Hello, world!>) for purposes of concatenation or testing for contain-
ment with either epsilon or Ascii-240.  It avoids the need to introduce new phrase numbers 
in such operations, with the result that code is easier to write and read.  Of course, there are 

162                                              CPG  Chapter 10: Miscellany of XPL Information



still operations, notably parsing -- with either XS or VA@nn[separator][#] (there are exam-
ples of both in WILDFUNC) -- in which saving the subject string to a phrase remains 
mandatory.

NB (In  VA@nn[separator][#], nn denotes a phrase containing a string, [separator] is the 
character used to delimit segments of the string, and [#] is the number of the segment to be 
parsed out.)

-----------------------------------------------------------------------
How to put your own programs into the XYWWWEB.U2 file:
Assign your program a Type-5 framename, enclosed in double curly braces.  [Lots of exam-
ples in U2 itself.] Put the program code immediately beneath, enclosed between Ascii-2's.  
(Use any existing frame as a model.)  If you want to be able to pass arguments to your pro-
gram (i.e., with PROGRAM_NAME args<Helpkey>), use Phrase 50 as the argument 
holder. Again, see existing frames for examples.  Add your programs at the *bottom* of the 
U2 file, then issue Command LH<Helpkey> to reload the file.

-----------------------------------------------------------------------
Drag files into NB from Explorer or PowerDesk
Drag the files not to the workspace for the file but to the rulers or toolbars on the edge of 
the NB window—any grey surround will do; or even the title bar. [Mary Bernard/others]

-----------------------------------------------------------------------
Keys available for User Keyboard Definitions (this dates from NB5.5)
[from Steve Siebert]
Esc and PrtSc/SysRq are not available in any keyboard state --Tab is not available in C, 
C+S, A, and A+S states --F4 is not available in C and C+S states --F6 is not available in C 
and C+S states as well as A and A+S states --Del is not available in C+A and C+A+S states 
--The following keys (harmlessly) pull down an NB menu, but can otherwise take assign-
ments:
A+W
A+E
A+T
A+I
A+P
A+F
A+H
A+V
A+M
A+Space, A+S+Space
--Pause/Break is accessible as key #90 in C, C+S, C+A, and C+A+S states, and as key #69 
in A and A+S states
But note that there are now no NB restrictions, other than the list of Alt keys noted above 
(and even that follows a Windows convention).  That is to say, the keys that cannot be 
assigned by users are keys that are reserved by Visual Basic for Windows.

CPG  Chapter 10: Miscellany of XPL Information                                              163



SUMMARY OF KEYS NOT AVAILABLE (same info as above in different format)

164                                              CPG  Chapter 10: Miscellany of XPL Information

C+Esc
C+Tab
C+F4
C+F6
C+#69
C+PrtSc
----------------------
C+S+Esc
C+S+Tab
C+S+F4
C+S+F6
C+S+#69
C+S+PrtSc
-----------------------
A+Esc
A+Tab
A+W/E/T/I/P/F/H/V/M/Space
A+F6
A+PrtSc
A+#90

-----------------------
A+S+Esc
A+S+Tab
A+S+Space
A+S+F6
A+S+PrtSc
A+S+#90
-----------------------
C+A+Esc
C+A+#69
C+A+Del
C+A+PrtSc
-----------------------
C+S+A+Esc
C+S+A+#69
C+S+A+Del
C+S+A+PrtSc

-----------------------------------------------------------------------
Append and APT (APpend to Top of file) commands
The command 'append' appends one file to the bottom of another. You can use it in the 
form:
F9 append [fileA],[file B] F10

 To append the file in the current window to another file, you can cut out the '[fileA]' part 
and simply say:

F9 append [fileB] F10

If you use ‘apt’ in ts form, you’ll get an error message, 'diskette full'—and the current file 
is not appended to the top of the target file.
‘apt’ requires full syntax - you can't leave out '[fileA]'. What works is:

F9 apt [fileA],[fileB] F10
-----------------------------------------------------------------------
Function IV
opens an input window like a footote but leaves no trace in normal view. In draft view it is 
identified as "Invisible comment" in verbose mode, IV in brief mode.

Since NB does not print background, you can use white type on a dark background and it 
will be visible on screen but not print.  In ver. 8 this is easy to do with control-7 and 
control-8. [from Joel Lidov]



-----------------------------------------------------------------------
BX and repeat commands
Note that you can’t do bx command q2 q2 q2.... as you can with bc command xc xc xc. 
So, if you’re substituting bx q2 for bc xc, don’t do it in contexts where you have a succes-
sion of xcs executing the same command (an example might be if you are changing all 
double spaces to single spaces, and want to make sure you include any accidental triple or 
quadruple spaces. bc ci /  / /xc xc xc xc would do it; bx ci /  / /q2 q2 q2 q2  stops after the 
first q2, so doesn’t catch triples.

-----------------------------------------------------------------------
BX notes, from Carl Distefano’s BX tutorial:
If you find that BX misbehaves, I recommend downloading the full tutorial, at:
 http://www.serve.com/ammaze/xy/BX.ZIP

Paired with function Q2 -- as in BX commandQ2 -- BX executes native commands 
without blanking and rewriting the command line.
BX is the standard way to execute commands in XPL programs running under Nota Bene 
for Windows, XyWrite 4 and XyWrite for Windows. It replaces  BC command XC  in 
most contexts.  (The BC method still works, and is useful in special situations.)
When NB encounters a BX is encountered it the command that follows. It then waits -- 
indefinitely if necessary -- for a closing Q2.  Thus, every BX must conclude with Q2 
before other instructions can be executed.  This is a major difference from funcs BC and 
XC, which are independent of each other

Wildcards: SEarch wildcards must appear as wildcards (reverse-video characters that look 
like a single character), not as functions:

The command
 ‘BX se "SandS"Q2
will find the word ‘and’.[S is the any-separator wildcard, input by doing F9 func nn F10, 
then pressing ‘s’]
 ‘BC se "WSandWS"XC [Here, WS is the any-separator wildcard, input with
                                          ‘pfunc ws’]
will also find it (WS gets translated to S on the command line). But:
 ‘BX se "WSandWS"Q2
will not, because BX interprets the WS literally and searches for a string containing the 
function WS.

Command Brackets
Strings containing balanced pairs of ‘guillemets’ [XyWrite’s term for  command brackets] 
can be searched for literally:
 BX se "«US0»"Q2 
This searches for the embedded command «US0»
Thet search can also be done using the ‘guillemet wildcards’ ® and ¯:
 BX se "®US0¯"
Guillemet wildcards are required when:
(a) the SEarch string includes unbalanced guillemets,
(b) using real guillemets would have the effect of embedding an undesired command, 

CPG  Chapter 10: Miscellany of XPL Information                                              165

http://www.serve.com/ammaze/xy/BX.ZIP


(c) the SEarch string is an XPL expression.
 BX se "®IP"Q2 
 SEarches for embedded IP command (unbalanced guillemet)
 BX se "®IFO®EI¯"Q2 
 SEarches for IF or EndIf in XPL code
When in doubt about whether to use real guillemets or guillemet wildcards, use the wild-
cards.

-----------------------------------------------------------------------
Functions AK and SH in NB
On the other hand, the absence of AK or SH  certainly doesn't mean you can't take 
advantage of the menus in your XPL programs.  You can still execute any menu by 
making a direct call to the corresponding frame in NB.DLG.
The usage is JM framenameQ2 (where JM and Q2 are 3-byte funcs, of course).  For exam-
ple, to activate the Import Text Files menu, you'd write JM TextBQ2 .  (Or, in the KBD 
file, nn=JM,T,e,x,t,B,Q2.)  It's actually far superior to AK.  Why traverse three or four 
menus to get to the one you want when you can go there directly?  In this connection, you 
may want to take a look at the discussion in BX.TXT on "Companion Functions JM and 
JH" (BX.TXT can be downloaded at:
XyWWWeb, http://www.serve.com/ammaze/xy/BX.ZIP).  Finding the frame to execute is 
usually just a matter of searching in NB.DLG for text that appears in the menu display.  
For example, to find TextB, I searched for "Import Text File".  The framename is in dou-
ble curly braces at the start of the frame  -- here, {{K,TextB}}.  It also helps to know that 
that all dialog boxes are Type K frames; i.e., the first char after the open curly braces is 
"K".

You'll find it opens up possibilities.  It can also be used to make calls to Jumbo U2 
routines (in which case the syntax would be JM 2.framenameQ2 ; the "2." points to the U2 
file -- again, see BX.TXT).  Frames described in the section of XYWWWEB.INF entitled 
"XyWWWeb.U2 Common Resources: Reusable Subroutines for Discrete Tasks" are espe-
cially well-suited for this purpose.  In fact, the Jumbo U2 is built on this kind of inter-
operability -- routines calling other routines all over the place.  So are the menus in 
NB.DLG.  It's a new dimension to XPL that wasn't possible before Xy4|NB5.
 -----------------------------------------------------------------------
Runcode
Another very useful testing/debugging tool is U2 frame RUNCODE. Have you tried it?  It 
does several things, but the handiest usage is to run DeFined blocks of XPL code.  Simply 
DeFine the code you want to run and execute RUNCODE<Helpkey>.  You can even feed 
an argument to the code that accepts arguments, with RUNCODE [arg]<Helpkey>.

-----------------------------------------------------------------------

Time  programs with function ZT
You can now time your programs.  Func ZT ("Zero Time") resets the timer to 0.  The 
Elapsed Time is reported by <VA$ET>.  Here's how you would time how long it takes to 
count to 10,000:

166                                              CPG  Chapter 10: Miscellany of XPL Information

http://www.serve.com/ammaze/xy/BX.ZIP)


<SX01,0>ZT ;*; Initialize 01 and reset timer ;*;
<LBa><IF<PV01><10000><SX01,<PV01>+1><GLa><EI>;*; Count up ;*;
<SX01,"Done - Elapsed time: "+<VA$ET>><PR@01><EX>;*; Report elapsed time

------------------------------------------------------------
Func + wildcard on cmd line or in text
Issue func NN on the CMline, and then hit the minus key.  That will produce the negation 
wildcard.  And hitting any of the other keys I mentioned will produce the other wildcards.
The wildcard will be inserted at the cursor position, either on the command line or in text.  
If you want it in text, you have to CC the cursor to text before executing func NN.

-----------------------------------------------------------------------
Func NN
Func NN takes an argument: the minus sign produces the negation wildcard;
the numbers 0 through 9 produce the numeric (repetition) wildcards;
an Ascii-46 full stop produces the sentence separator wildcard;
Ascii-17 produces the Ascii-13 (carriage return) wildcard;
the Ascii-25 down arrow produces the Ascii-10 (linefeed) wildcard;
Ascii-27 produces the CrLf (carriage return+linefeed) wildcard (also produced by execu-
ting func WC);
O produces the logical OR wildcard.
Also, NN followed by A, L, N, S, W or X will produce, respectively, the alphanumeric, 
letter, number, separator, variable-string and variable-character wildcards, which can also 
be produced by executing funcs WA, WL, WN, WS, WW and WX.

-----------------------------------------------------------------------
Close a prompt window—to close within a program (=F3) - 3 ways
1. The foolproof way to do it -- if you know positively that a command window is already 
open -- is (or should be) YD XD.  Func XD closes a command window OR undefines text 
if any is defined.
Therefore the initial func YD is necessary to undefine any defined text, so that the ensuing 
XD is sure to close the window.  (XD XD is a no go, because if text isn't defined in the 
command window, the first XD will close it and the second XD will undefine any defined 
text in the *main* window.  No good.)
2. If you're not certain whether a command window is open, you can test for it with 
<VA$TW>, which returns 1 if such a window is open, else 0.  Thus the absolute foolproof 
way is <IF<VA$TW>(>)0>YD XD <EI>, where < and > represent guillemets and (>) 
represents the greater-than sign.
3. Actually, since commands that open command windows can be nested, open command 
windows can themselves be nested (one open within another open within another, and so 
on).  So, really, the absolutely, positively foolproof way is to have a loop that repeats until 
the VAlue of $TW tests 0, like this: <LBa><IF<VA$TW>(>)0>YD XD <GLa><EI>.

CPG  Chapter 10: Miscellany of XPL Information                                              167



-----------------------------------------------------------------------
Functions list, from U2 file

@0 @1 @2 @3 @4 @5 @6 @7 @8 @9 @A @B @C @D @E @F @G @H @I @J @K 
@L @M @N @O @P @Q @R @S @T @U @V @W @X @Y @Z AD AS BF BK BS 
CC CD CH CI CL CM CN CP CR CS CU DC DF GH DL DP DS DW EL ER EX GT 
HM M0 M1 M2 M3 M4 M5 M6 M7 M8 MD MU MV NC NL NK NP NR NS NT NW 
PC PD PL PP PR PS PT PU PW R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 RC RD RE RL RP 
RS RV RW SD SH SI SK SM SN SS SU SV TF TI TN TS UD WA WC WL WN WS 
WX WW XC XD DT S1 S2 S3 S4 S5 S6 S7 SP BC LB LE NF PF TP BD MS NM LD LL 
LR LU UP FF YD DO DX MK SO OP WZ NX SW FD FM TL TR TE ED EE HC EC 
MC #1 #2 #3 #4 #5 #6 #7 #8 #9 $1 $2 $3 $4 $5 $6 $7 $8 $9 DR EN C0 C1 C2 C3 C4 C5 
C6 C7 C8 C9 EF IB NO NI CO $0 LS XP WG XM &0 &1 &2 &3 &4 &5 &6 &7 &8 &9 
&A &B &C &D &E &F &G &H &I &J &K &L &M &N &O &P &Q &R &S &T &U 
&V &W &X &Y &Z HL $A $B $C $D $E $F $G $H $I $J $K $L $M $N $O $P $Q $R 
$S $T $U $V $W $X $Y $Z XX H@ VH MW QH DK SR SC TG H1 JH DZ DD DM LT 
RK NN MT ET ZT T1 TT << >> IT SL SF FL FR FC SY ME AC FS TW MI RO NB Q1 
Q2 Q3 Q4 Q5 Q6 Q7 Q8 TO IR AR AX DB DE HF SA OV TC TB JM SG XH FT BX 
MN CB M9 MZ ZZ RX ST KF JC AK TM NU B4 QP HG US XE ES RB S- S+ ** BN 
RU CF UI XS EA BT KD DN HI WH XN FX UN MX AZ

-----------------------------------------------------------------------
Making print mode changes work on words with apostrophes
Use built-in functions, thus:
 #=YD,DW,BX,(,m,d, ,b,i,),YD
To exclude the trailing space (or other trailing separator) from the MoDe change, try this:
 #=YD,DW,CL,DM,DZ,BX,(,m,d, ,b,i,),YD
Either of these should solve the problem of the excluded apostrophe.

-----------------------------------------------------------------------
Straight double quotes in programs
Double quotes can be used to refer to any string (i.e., anything that can be saved to a 
phrase with SV, e.g., <SV01,Hello, world!>) for purposes of concatenation or testing for 
containment with either epsilon or Ascii-240.  It avoids the need to introduce new phrase 
numbers in such operations, with the result that code is easier to write and read.  Of 
course, there are still operations, notably parsing -- with either XS or VA@[separator]nn 
(there are examples of both in WILDFUNC) -- in which saving the subject string to a 
phrase remains mandatory.

-----------------------------------------------------------------------
XYWWWEB.U2: if calling it in Page Layout View crashes NB
Call it in Show Codes view with F9 ca/100 xywwweb.u2 F10

168                                              CPG  Chapter 10: Miscellany of XPL Information



-----------------------------------------------------------------------
Access NB menus from the keyboard
In Chapter 7 I described how to use a shareware macro program, such as  Macro Express, 
to run 35 programs from one key. You can also use such a program to do something you 
cannot do via XPL: access items on Nota Bene’s menus without a mouse. For instance, the 
dialog accessed by Tools, Page Indexes, Mark...does not have a keyboard shortcut. But  
Macro Express lets you do it, with a macro that reads ‘<ALT>TXM’ (plus a couple of 
codes to slow the macro down a tad; otherwise it’s too fast for NB). I use other macros to 
open Tools, Preferences and to do File, Maintain in Ibidem. [Mary Bernard]

CPG  Chapter 10: Miscellany of XPL Information                                              169



Codes that Do Not Seem to Work in NB for Windows

These codes may work for others, but they do not for me. There are two lists; those in the 
second are probably only used in XyWrite. I include both lists for the sake of completeness.
 
Codes which are more likely to work:
AP Auto-pause on (pause printing at end of each page) [embedded command]
    (needs testing by someone whose printer supports it; mine doesn’t.)
beep Used in programming to produce a beep [immediate command]
    (doesn’t work for me) (XyWrite)
B4 Display dialog box previous to the last one displayed. [function]
box (XyWrite only  - freezes NB) [immediate command]
BT Toggle window borders on and off. (doesn’t work for me) [function]
cart Loads font information for the named cartridges. [immediate command]
    (XyWrite only ‘command not recognised’ in NB Win)
cdl Change directory (any difference between this and ‘cd’?) [immediate command]
CF Column Func (how does this work?) (1=Ins before; [function]
      2=Ins after; 3=Del; 4=Select column; 5=Select table)
clrsum or Clear sum in memory without inserting value into text [immediate command]
  cs    (Doesn’t work for me on sum done with ‘x+y=z’)
clrxsgt Clear all 3-digit programming phrases and current [immediate command]
      ‘run’ command (not tested, sounds drastic)
cm (found this in a NB4 program that still works: ‘BC cm dXC’ [immediate com-
mand]
    What does it do?)
correct (XyWrite only) [immediate command]
cs Same as ‘clrsum’ [immediate command]
    (Doesn’t work for me on sum done with ‘x+y=z’)
DK (Does nothing) [function]
docbld (XyWrite only) [immediate command]
DR (Does nothing) [function]
EA Open command window for editing text only. [function]
  (‘place cursor on marker’ - but doing so has no effect)
ed or edit Call file (XyWrite) [immediate command] obsolete
EF # Special printing effect (XyWrite only) (not tested) [embedded command]
     Activates special printing effects for printers that support
     them. # is one the following values, or a combination of
     them:
      1  Reverse        32 Not Assigned     1024 Double Underline
      2  Outline         64  Not Assigned    2048 Overscore
      4  Shadow       128 Double High     4096 Floating Underline
      8  Inverse        256 Script Up          8192 Outline/Shadow
     16 User Set      512 Script Down    16384 Wide
        To activate more than one special effect at the same time, add values
     assigned to each effect. E.g., "ef 4224" activates double high c^Rharacters
     with floating underline  (where 4224 is sum of two special-effect values
     (128+4024). This command also turns off  any other special effects that
     were active.

170                 CPG  Chapter 11: Codes Probably Out-of-Date or for XyWrite Only



    (needs testing by someone whose printer supports it; mine doesn’t.)
ET Compute amount of time elapsed since ZT function and insert in text. [function]
     (programming) (not tested) (XyWrite)
EV Evaluate (XyWrite Mailmerge only) [embedded command]
FS Return cursor to last misspelled word and display      [function]
    spelling menu (XyWrite only)
HG 0/1 Display border around graphic area without displaying graphic.       [function]
    0 turns display of graphics off, 1 turns it on (doesn’t work for me)
I1-I9 Set up index format, set 1 - set 9 (XyWrite) [embedded command]
    (valid in NB Win?)
IB Index break (break between alphabetical entries) (in NB Win?) [embedded command]
IN Include text file - how does this work? (XyWrite only) [embedded command]
   IN [filename], depth, where [filename] is printer-ready. Includes
   a printer-ready file (with name [filename]) at current cursor
   position.  Measure the vertical depth (in inches) in the printer-ready
   file and type that number as the depth.  Files that contain a file-end
   marker are not  printer-ready
IW 0/1 (entered at top of file by ‘savcln’ what does it do?) (XyWrite) [embedded command]
ix # Index Extraction command (XyWrite only) [immediate command]
JH Display Help frame with specified keyword. [function]
    (NB DOS)
KD key diagram?
kilprn Stops printing to a printer (XyWrite only)  [immediate command]
ldprn Load printer substitution table  (XyWrite only) [immediate command]
ldrk Load program (recorded with function RK) on phrase key [immediate command
    (XyWrite only)
ldsort Load sort-order file (XyWrite only) [immediate command]
ldsub Load printer substitution table  (XyWrite only) [immediate command]
LF 0/1 Turn off/on display of graphics   (for me, this makes no  [function]
     difference, either in calling files containing graphics
    or in turning off graphics within an open file.)
LN Line numbering. [This may be XyWrite only, or DOS only.] [embedded command]
 Defines how line number of each  text line   is printed in the margin.
  This command has three formats:
       ln 0               Begin line numbering
       ln 1               End line numbering
       ln m1,m2,...mn     Define Line Number
    When you define ln, it is automatically on.  ‘ln 0’ lets you turn
   before reaching the end of the file. You can then
    use ln 1 to restart line numbering from where you left off.
     m1, m2, etc.., are one or more of the following:
       o#,e#  Offset: How far from the edge of the paper you want
      numbers  to print for odd and even pages (where # is the number
      of inches).  If you omit e#, XyWrite uses the value defined for o#.
      You must specify a value for o#.
        i#     Initial value -  Starting line number (#).  The default is 1.
        d#     Divisor  - Lets you print every other line number (or some other
        alteration) by specifying a divisor.  The default is 1,  which means that
        every number is printed.

CPG  Chapter 11: Codes Probably Out-of-Date or for XyWrite Only                         171



       c     Continuous number - Count numbers continuously from page
       to page.  The  default is to restart on every page.
       b      Blank lines - Do not count blank lines.  A blank line contains only
       a carriage return, formatting commands, or both, but no  text or spaces.
       The default is to number blank lines.
       h      Headers -  Include running headers in the count.  The default is
      to omit line numbers from running headers.
       f      Footers  - Include running footers in the count. The default is
      to omit line numbers from running footers.
logoff Close any open files and log off current user (XyWrite)   [immediate command]
login/logon  (XyWrite) Log on network user and load any default settings [immediate command]
       associated with that user.  Runs any XPL commands
      (e.g. Load commands, etc.) stored in file  [username].LOG
      located in directory «VANL» directory - akin to a
      NBSTART.INT file for each valid username). (username 8 chars
       max.) Usage: logon [username]
LQ # Letter quality (XyWrite) - activates this mode on [embedded command]
    printers that support it.  # can be:
    1=Draft, 2=Letter, 3=Letter II, 4=Letter III, 5=Near Letter
    Quality Gothic, 6=NLQ Courier, 7=Utility, 9=Draft II
    (needs testing by someone whose printer supports it; mine doesn’t.)
LT Toggle suppression of display of captured redlining  [function]
    login information (I can’t make this work)
LT (XyWrite - link text) Converts text in other file formats into [embedded command]
     XyWrite format and merges it into the displayed file at the
     current cursor  location.
LW (‘Function not recognized’) [function]
MN Use next 2 chars: CD=Cartridges, FO=Fonts, MT=Match Type,  [function]
    SZ=Size (printing, but is it relevant in Windows?)
    (needs testing by someone whose printer supports it; mine doesn’t.)
MT Multiply (*) or divide (/) accumulated sum by selected number.       [function]
    (Doesn’t work for me on sum done with ‘x+y=z’)
nef New form (XyWrite only) [immediate command]
NK (Does nothing) [function]
NP No pause (printing) - cancels auto-pause (XyWrite only) [embedded command]
    (needs testing by someone whose printer supports it; mine doesn’t.)
NR (Does nothing) [function]
OV (Does nothing) (was NB4) [function]
PA Pause printing  (not tested) (XyWrite only)  [embedded command]
    (needs testing by someone whose printer supports it; mine doesn’t.)
PB Page begin string - same as PC (XyWrite only) [embedded command]
    (needs testing by someone whose printer supports it; mine doesn’t.)
PC Printer control string (XyWrite only) [embedded command]
    (needs testing by someone whose printer supports it; mine doesn’t.)
PI Insert printer string (still relevant in Windows?) [embedded command]
    (needs testing by someone whose printer supports it; mine doesn’t.)
     And in NB4 it used to give trouble. I think it’s an outdated, NB3
     command. )
PP Put paragraph (XyWrite only) [embedded command]

172                          CPG  Chapter 11: Codes Probably Out-of-Date or for XyWrite Only



prf Write printer file FO.TMP to disk (same as ‘fo’) [immediate command]
    (XyWrite)
prints Print to screen (XyWrite only - like ‘review’) [immediate command]
Q1 smart quotes?
QH Display the Menu/Help screen whose keyword precedes cursor [function]
QP (Does nothing) (‘File is missing {{’) [function]
r2x Converts RFT:DCA format files into XyWrite (XyWrite only) [immediate command]
review review file (XyWrite only) (like print preview - doesn’t work  [immediate command]
    in NB Win) 
rmvscr Closes current window (XyWrite only) [immediate command

rpllf Make all but first line of file flush to left margin [immediate command]
RR Repeat records (XyWrite only) [embedded command]
rs Remove (empty) screen - (XyWrite/NB DOS only - not [immediate command]
    NB Win)
RU (Does nothing) [function]
rv   Same as ‘review’ (XyWrite only - doesn’t work in NB Win) [immediate command]
savcln Save file under new name, with formatting codes at top [immediate command]
    (XyWrite) Some of the codes are different from those
    put at top of file by Format, Page Layout, Write Defaults.
    (What is difference between this and Write Defaults?)
saverk Saves program created in Record keystroke mode [immediate command]
    to a program file (XyWrite only)
SC ### (gets input at TF with ‘savcln’. What does it do?) [embedded command]
SC 0/1 Turn Auto-Check off/on [embedded command,  default]
    (Doesn’t work for me: executing ‘d sc=1’ and then typing
    ‘persnl’ (for ‘personal’ doesn’t result in beep. Should it?)
SN Set numeric keypad to numbers  (doesn’t work in NB Win) [function]
SR Set record (XyWrite only) [embedded command, function]
stsgt Store current phrase library (XyWrite) [immediate command]
stspell Store temporary spelling dictionary (XyWrite only) [immediate command]
SU Subtract  number cursor is on from the total. [function]
    (Doesn’t work for me on sum done with ‘x+y=z’)
SY n,m Symbol set for HP LaserJets  (XyWrite in this form) [embedded command, default]
    n is name of symbol set, m the pitch for
    monospaced (use 0 for proportional fonts)
    {DF SY=23Z,10,0,3}
    (Why the difference between NB.DFL and XyWrite forms?)
T1-T9 TOC format, set 1 - set 9 (Used in NBWIN?) (XyWrite) [function]

TM Move to column element (0 = next; 1 = previous; 2 = top;  [function]
    3 = bottom) (doesn’t work in NB Win)
TX # Extract TOC from source file, save it to target file (XyWrite) [function]
    (Used in NB Win?)
UD Use dictionary (+ dict. name - error message: [embedded command]
    ‘dict. path not found’) (XyWrite only)
unload Unload spell checker [immediate command]
  (says ‘done’ but doesn’t work on personal spell checker)

CPG  Chapter 11: Codes Probably Out-of-Date or for XyWrite Only                         173



updatetx (XyWrite only) [immediate command]
WH (Does nothing) [function]
WM Wait for message (what does this do) [embedded command]
WS1 Whole-space justify on [embedded command]
x2r (XyWrite only) [immediate command]
XE (Crashes program) [function]
xlate Strip high-bit characters - (XyWrite only,  doesn’t work in  [immediate command]
    NB Win; in XyWrite, imports WordStar file)
XS Toggle display of markers affected by scoping [function]
    (what does this do?)
XX Define floating accent (must also be entered in AC Table in  [function]
  XX,/ Stroke/slash accent [XYWrite]
  XX,ε Macron accent [XYWrite]
  XX,” Double acute accents [XYWrite]
  XX,≈ Cedilla accent pair [XYWrite]
  XX,�I Caron accent pair [XYWrite]
  XX,�K Ogonek accent [XYWrite]
  XX,�O Breve accent [XYWrite]
ZT Reset stopwatch function to zero and start timer (programming) [function]
    func ZT 0 resets elapsed time («VA$ET» to 0:00:00:00 [broken!]

Codes from list compiled for XyWrite - very unlikely to work in NBWin, included for complete-
ness

Those with no description do nothing, and give no error message when I do F9 [command] F10. 
Error messages are in quotes.
I found some of these in Tyson’s XyWrite Revealed; they are probably relevant only to DOS ver-
sions of XyWrite.

addtbl Doesn’t add column of figures [immediate command]
ats  [immediate command]
atx  [immediate command]
b2g  [immediate command]
be ‘command not recognised’ [immediate command]
big5in  [immediate command]
big5out  [immediate command]
bldidx indexing [immediate command]
bldseq ‘requires sequence no. + create/replace flag’ [immediate command]
box  [immediate command]
bpt  [immediate command]
caf call form - useful in nb6? (‘caf [filename]’ calls a file) [immediate command]
cart Call program file  [immediate command]
chgal 0-9 ‘the editing position is not in an object’ [immediate command]
chgedt  [immediate command]
clean  [immediate command]
clnp  [immediate command]
clnprs  [immediate command]
clrsum or Clear sum in memory without inserting value into text [immediate command]

174                          CPG  Chapter 11: Codes Probably Out-of-Date or for XyWrite Only



cn Force numeric lock off  (‘command not recognized’) [immediate command]
correct  [immediate command]
ddeexecute ‘command entry error’ / ‘not recognised’’ [immediate command]
ddeinitiate crashes program [immediate command]
ddepoke ‘command entry error’ [immediate command]
dderequest ‘command entry error’ [immediate command]
ddeterminate ‘command not recognized’ [immediate command]
dgb (opens window with B in it) [embedded command]
dgt (opens window with T in it) [embedded command]
dgw  (opens window with W in it) [embedded command]
dlg ‘command entry error’ [immediate command]
dll  [immediate command]
docbld  [immediate command]
edf forms [immediate command]
edp Call file cursor is on. ‘edp x’ calls file ‘x’ in directory [immediate command]
    Is this what this command is meant to do - am I missing something?
EF # Special printing effect [embedded command]
     Activates special printing effects for printers that support
     them. # is one the following values, or a combination of  them:
      1  Reverse        32 Not Assigned     1024 Double Underline
      2  Outline         64  Not Assigned    2048 Overscore
      4  Shadow       128 Double High     4096 Floating Underline
      8  Inverse        256 Script Up          8192 Outline/Shadow
     16 User Set      512 Script Down    16384 Wide
        To activate more than one special effect at the same time, add values  assigned to
    each effect. E.g., "ef 4224" activates double high characters  with floating
     underline  (where 4224 is sum of two special-effect values  (128+4024).
    This command also turns off  any other special effects that    were active.
 
ET Compute amount of time elapsed since ZT function and insert in text. [function]
EV Evaluate (XyWrite Mailmerge only) [embedded command]
form forms [immediate command]
FS Return cursor to last misspelled word and display      [function]
    spelling menu
g2b  [immediate command]
gcn puts 2 GC deltas in text with low-ascii codes [immediate command]
    between
getglobal ‘specify group/style name’ [immediate command]
gtgb ‘specify group/style name’ (same as getglobal) [immediate command]
help ‘press Esc to remove menu’ [immediate command]
hkdef ‘not within a help link’ [immediate command]
imageinfo  [immediate command]
IN Include text file -  [embedded command] 
   IN [filename], depth, where [filename] is printer-ready. Includes
   a printer-ready file (with name [filename]) at current cursor
   position.  Measure the vertical depth (in inches) in the printer-ready
   file and type that number as the depth.  Files that contain a file-end
   marker are not  printer-ready
ja  [immediate command]

CPG  Chapter 11: Codes Probably Out-of-Date or for XyWrite Only                         175



jc
jg  [immediate command]
jrcom  [immediate command]
jrngrp ‘requires number greater than zero’ [immediate command]
jrprs  [immediate command]
jrrmv  [immediate command]
js  [immediate command]
kilprn  [immediate command]
kiltyp Stop current print job  [immediate command]
kp (Same as kilprn)  [immediate command]
kt Stop current print job (Same as kiltyp) [immediate command]
ldprn Load printer substitution table   [immediate command]
ldsort Load sort-order file  [immediate command]
ldsub Load printer substitution table   [immediate command]
linktx  [immediate command]
loado  [immediate command]
login ‘logoff accepted’ [immediate command]
logoff ‘logoff accepted’ [immediate command]
logon ‘logoff accepted’ [immediate command]
logout ‘logoff accepted’ [immediate command]
lp Load printer file   [immediate command]
mail ‘SMI not enabled in WIN.INI’ [immediate command]
mp  [immediate command]
msepos  [immediate command]
mwin  [immediate command]
nef  [immediate command]
newscrn  [immediate command]
NP No pause (printing) - cancels auto-pause  [embedded command]
objdef  [immediate command]
objdel  [immediate command]
objfget  [immediate command]
objget  [immediate command]
objloc  [immediate command]
objupd  [immediate command]
ole  [immediate command]
olndef outline? [immediate command]
olnmov Outline - ‘specify PO, NO...’ [immediate command]
oo ‘done’ - but no change [immediate command]
oos  Prompt ‘Cannot run cmd;’ then opens DOS window [immediate command]
opnoln ‘File not found’ [immediate command]
ox ‘done’ [immediate command]
PA Pause printing  [not tested]  [embedded command]
PB Page begin string - same as PC  [embedded command]
PC Printer control string  [embedded command]
PP Put paragraph  [embedded command]
prints  [immediate command]
prn ‘printing file “review.tmp”’ (but it doesn’t) [immediate command]
prs (Opens new screen) (same as prints) [immediate command]
pstring  [immediate command]

176                          CPG  Chapter 11: Codes Probably Out-of-Date or for XyWrite Only



putc  [immediate command]
r2x  Converts RFT:DCA format files into XyWrite files [immediate command]
rer (Opens note window) [embedded command]
review review file  (like print preview)
rex (Opens note window) [immediate command]
rfrp  [immediate command]
rmvscr  [immediate command]
rplfil (‘Command entry error’) [immediate command]
RR Repeat records  [embedded command]
rs Remove (empty) screen  [immediate command]
rv   Same as ‘review’ s [immediate command]
r2x   [immediate command]
saverk Saves program created in Record keystroke mode [immediate command]
    to a program file
se[/c] range|string|  Search directory - searches through a series of file  [immediate command]
             names separated by commas (range) for the text (string). ‘searcha’
          and ‘sea’, ‘searchba’ and ‘seba’, can also be used  You must do
         search from blank window; do:  F9 ne F10 before  executing search command.
          Switch:
              /c tells  program to count  number of times  string
                 appears, but not to stop at each match.
 
setdm (‘Command entry error’) [immediate command]
setlgd (‘Command entry error’) [immediate command]
setp ‘Select Windows printer’: dialog,XyWrite buttons [immediate command]
setpos (outlines) [immediate command]
shohyp Show effect of current hyphenation rules  [immediate command]
showdlg ‘command entry error’ [immediate command]
shwpg ‘requires source file and target file’ [immediate command]
sm (a numeric command - ‘Sum requires 1 number’) [immediate command]
SR Set record  [embedded command, function]
stspell  [immediate command]
    ‘dict. path not found’)
stxlate ‘command not recognised’ [immediate command]
testob (opens new screen) [immediate command]
tmbld  [immediate command]
tol (‘Need: TOL digit, name, mnemonic1,...,mnemonicn. [immediate command]
     mnemonic1,...,mnemonicn’)
ty Print to printer [immediate command]
tyf Print to file [immediate command]
type Print to printer [immediate command]
typef Print to file [immediate command]
types Print to screen  [immediate command]
tys Print to screen  [immediate command]
undel  [immediate command]
unl unload feature  [immediate command]
unload unload feature  [immediate command]
updatetx  [immediate command]
uwf  [immediate command]

CPG  Chapter 11: Codes Probably Out-of-Date or for XyWrite Only                         177



vbx (‘Command entry error’) [immediate command]
wordchk ‘no alternates for [any word]’ [immediate command]
wprof (‘Command entry error’) [immediate command]
xlate Strip high-bit characters - ( imports WordStar file) [immediate command]
x2r  [immediate command]
xe Search filelist for text  [immediate command]
xea Search filelist for text, absolute [immediate command]
   (These 2 freezeNB)
xm (‘Function requires 1 number’) [immediate command]
xwdll (‘Command argument not recognized’) [immediate command]
zap ‘0 words, 1 questionable’ (or crashes program) [immediate command]

178                          CPG  Chapter 11: Codes Probably Out-of-Date or for XyWrite Only



Appendix: NB DOS XPL Error Messages, and List of XyWrite Error Messages

. General Introduction.  XPL does not precompile, nor flag errors; it just 
tells you there is one (not always that).  Its error messages are generic─they do not 
always tell you what the error in the particular case is; and they do not cover everything.

A distinction needs to be made between errors that can occur when writing a program 
and those that can occur during an attempt to run the program.  The latter may indicate, 
not that there is something wrong with the program, but that it cannot perform its task 
on the particular occasion; e.g., a Search command that cannot find any instance, or any 
more instances, of the string being sought.

1. Error Messages  Most errors, when they occur, do not display 
messages on the prompt line; the following are those that are commonly displayed:

‘Invalid Format command’
 An opening command bracket (with or without the closing bracket) has been 
entered in Normal mode.  The remedy is to switch to Expanded mode, which should 
always be used when writing a program.  No message is displayed in the case where 
there is a closing bracket that does not have a matching opening bracket.  But there is a 
quick and easy way to detect a surplus closing bracket.  In Expanded mode enclose the 
entire program in the IV command: insert «iv at the start of the program and » at the 
end; then switch to Normal mode.  If the program’s brackets are OK, the whole pro-
gram file will disappear; if there is an unmatched closing bracket, it will be shown.

‘No command’ or ‘Illegal command’
A command has been incorrectly entered on the action line.  E,g., BC  ca myfile.docXC 
(a space before ‘ca’

      BC camyfile.docXC   (no space between ‘ca’ and filename
      BC ra myfile.docXC  (‘ca’ mistyped as a non-existent command ‘ra’)

‘Command entry error’
i. A program call has been wrongly entered.

 a. The wrong call was used, e.g.,
   ‘pv’ instead of ‘is’ (or vice versa)
   ‘sv’ instead of ‘sx’ (or vice versa)

 See explanation of the difference between the calls in Chapter XPLCALLS.DOC

 b. The call was mistyped, e.g.,
   ‘=’ instead of ‘==’
   ‘$wn’ instead of ‘va$wn’

‘$wn’ contains the number of the active window, but it requires the value com-
mand (va) to display it, or to save it to a phrase, as in «sx01,«va$wn»»

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      179



ii. An attempt has been made to perform a string operation on a numerical value, or a 
mathematical operation on a string.  String operators are used for manipulating strings 
of characters ,  whether l i teral  or numerical ,  as in conjoining them (e.g. , 
«sx01,«i s02»+«is03»») ,  o r  in  locat ing one s t r ing wi th in another  (e .g . , 
«s x 0 1 , « i s 0 2 »ε «i s 0 3 »») .   T h e y  c a n n o t  b e  u s e d  f o r  e v a l u a t i n g  t h e m 
(e.g.,«sx01,«is02»/«is03»» - one string cannot be divided by another.)
«sx01,«pv02»/«pv03»» could be valid if what had been saved to phrases 01 and 02 had 
been numerical values.

‘Mismatched operands’
An attempt has been made to compare a string to a value.  E.g., «if«pv01»==«is02»»

‘Label not found’ The «lb...» has been omitted, or it does not exactly match 
the «gl...» in either spelling or case.  Not every «lb...» needs a corresponding «gl...», but 
every «gl...» needs a corresponding and exactly matching «lb...»; otherwise the program 
cannot jump to the correct place.

‘Need ID & expression’  A syntactical error has been committed with ‘sv’ or with 
‘sx’.  The comma may have been omitted, e.g., «sv01Yes» instead of «sv01,Yes». Or 
the phrase key has been identified, but the expression has not, e.g., «sv01».  Note: there 
is one exception to this: if a block of text has been defined, «sv01» is correct and saves 
the block to phrase 01.

In some situations, if either an opening bracket or a closing bracket is missing, e.g. 
«pv01 or pv01», the error message will appear.

‘No «ei»’
This is a common error.  Every «if...» clause must be closed with an «ei» call.  If it is 
not, Nota Bene has no way of knowing where the conditional clause ends, and cannot 
execute the program correctly.

‘Too many program calls’
An endless loop has been created.  E.g., you have included within a program the com-
mand to run itself.

‘Repeat w/alphanumeric’
A label name is missing from a «gl...» or an «lb...» call.  This is the same error message 
that you get if you try to assign a phrase to a regular phrase key by striking Alt+F2 and 
then strike any key other than a letter or a number.

180      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages



2. Identifying Errors
There are two Error variables, which should not be confused with each other: ER and 
$ER.  The former has only 2 values, the latter more than 300.

i. Whenever an error occurs ER is set to True, and as soon as the next command is 
given it is reset to False.  Thus, for example, if a program contains a search command 
for a specified word, and if no instance (or no further instance) of the word can be 
found, the command generates an error; and the program can include an instruction 
what is to be done if an error is met.  E.g., BC se  elephant XC «if«er»»«ex»«ei»: if no 
instance (or no further instance) of ‘elephant’ is found, the program is to to terminate.

ii. Also, whenever an error occurs, $ER is set equal to an XPL error number.  The 
number can be found, and the error can be identified, in either of two ways:

a. By executing the command BC va $erXC.  That will display in your 
screen file (when in Normal mode) a delta followed by a number, looking 
like an inserted counter; the number is the number of that particular error.  
In the case of the above example, what you will see in the file is 
«VA$ER»10, 10 being the error number that means ‘Not found’.  If $ER 
has no value, the delta will appear in the text followed by a 0.  In either 
case the cursor will be located immediately after the number, and a single 
stroke of the Backspace key will remove both number and delta (again, 
just as with a counter in the text).

b. In a program the value of $ER can be saved to a phrase,  as in 
«sx150,«va$er»», which can then be displayed, discarded, or evaluated, 
like any other phrase.

 CAUTION  It is a feature of Nota Bene that the value of $ER is always 
reset to 0, when the next command is given.  Therefore, unless the value is 
read or saved immediately after the error occurs, it will be lost; and, if the 
value is saved to a phrase, it should be saved to one that is higher than 
100 ;  o the rwi se  i t  w i l l  be  lo s t  when  you  l eave  the  p rogram:  
«sx150,«va$er»» will  survive the program in which i t  occurs:  
«sx50,«va$er»» will not.

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      181



XyWrite Error Messages Listed Numerically (from the XYWWWEB.U2 File)

182      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages

  1 Filename already exists.
2 Function requires an empty window.
3 |Do you want to delete marker? (Y/N)
4 Command entry error.
5 Application error ......
6 NB.DFL
7 Func t ion  r equ i r e s  an  open f i l e  o r  

filename.
8 Type password and press Enter.
9 �Disk(ette) is full.
10 Cannot find item.
11 There is no command on command line.
12 Command is not recognized.
13 Separator is missing.
14 Function requires selecting a block.
15 Help frame too large &
16 Printing file &
17 Press letter or number.
18 There is not enough memory to perform 

function.
19 There is no macro assigned.
20 Name
21 Press Esc to cancel the selection.
22 Too many mode entries.
23 Search string is not recognized.
24 Formatting command is not recognized.
25 Characters were lost during typing.
26 Source and target filenames cannot be 

identical. &
27 Cannot create temporary file.
28 Logon completed.
29 NBSTART.INT
30   --Shift+F1 to save.
31 Printer error.
32 Read error.
33 Cannot find specified field.
34 DIRECTRY.TMP
35 |Change ? Y=yes, N=no, S=stop here, 

O=one moreú
36 Change/Verify command canceled.
37 Done
38 (none)
39 PATH=
40 COMSPEC=
41 Too many soft fonts.
42 Overflow file full, printing terminated.
43 JM
44 Type "+" to continue printing.
45 Default drive/directory 1   Directory of 2
46        1 Files           2 Char.          3 Free
47 Specify filename to save selected block.

48 REVIEW.TMP
49 FO.TMP
50 INDEX
51 TABLE
52 Cannot continue scrolling.
53 Cannot modify protected text.
54 Correct format is @dat(mm-dd-yy)
55 Cannot choose soft hyphen character.
56 Going to formatted view with page breaks.
57 Cannot print to file while printing.
58 Not enough disk space to print document 

to file.
59 |File open--exit anyway? (Y/N)
60 Logon is not recognized.
61 CLOSED
62 OK
63 a:QUIT1.TMP
64 Current command is canceled.
65 No merge records extracted.
66 Preparing to print. Please wait.
67 Document summary corrupted.
68 Translate command requires 2-character 

string.
69 MLCS
70 Error loading macros.
71 <DIR>
72 Function is not recognized.
73 ON
74 OFF
75 Cannot sort records larger than 3000 

characters.
76 Math function requires equal sign.
77 Place cursor on a number to do arithmetic.
78 Not enough memory for new window.
79 Not enough memory. Counters are not 

accurate.
80 Mathematical result is too large.
81 No more windows are available.
82 Mnemonic for translation not found.
83 @UPR cannot convert numbers.
84 Cannot close last window.
85 There is an extra Start Command (E) in 

text.
86 There are too many values for the current 

command.
87 Tab settings are not in numerical order.
88 |Error writing quitn.tmp files--try again? 

(Y/N)
89 Error writing index file.
90 @SIZ cannot convert numbers.



91 Function requires one number.
92 Function requires numeric values only.
93 Cannot nest embedded commands.
94 Using a space as the leader character.
95 Specify mode.
96 Text saved.
97 .BAK
98 @INT only converts numbers.
99 Cannot move cursor outside command 

window.
100 Not enough memory for sorting.
101 Specify filename to run.
102 @C2X translate command requires string.
103 Help file is too big.
104 Use cursor keys to adjust window, press 

Enter to end.
105 Complete modification of tab ruler.
106 Error closing index file.
107 Cannot find index file.
108 Error reading index file.
109 Field does not exist.
110 Customization file requires a file label.
111 @CNV only converts 2 character strings.
112 Fill in this field.
113 |Do you want to exit? (Y/N)
114  on
115 Cannot print to screen while printing.
116 File corrected--save it?
117 �Disk full writing to overflow file--close 

file without saving? (Y/N)
118 |Continue previous correction? (Y/N)
119 Unrecognized line in custom file:
120 Function is not available while printing.
121 Menu/Help routine is missing named &
122 Dictionary is not loaded.
123 Index item is too large.
124 Typethru is on.
125 Mode value is not recognized.
126 Press key to insert (or run) macro.
127 |Filename already exists--overwrite it? 

(Y/N) &
128 |Type Y or N.
129 |Stop program? (Y/N)
130 Load UIF file before setting BZ value.
131 Specify path name.
132 |Do you want to delete? (Y/N) &
133 Default format is not recognized.
134 Specify program name.
135 Cannot run command.
136 Not enough memory. Clear some macro 

keys and try again.
137 Cannot append another column selection.

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      183

138 Function is not available in forms mode.
139 Cannot copy selected text into command 

window.
140 Specify filelist|search string|.
141 Specify program name and macro key.
142 Too many program calls or program loops.
143 Mismatched logical or numeric operands.
144 More than one unary operator.
145 Go to Label command requires a Label 

command.
146 Cannot find "End If." for
147 Function requires ID and expression. &
148 Cannot use more than ten shift keys in 

keyboard file.
149 Cannot use more than 20 tables in key-

board file.
150 Cannot use more than six shifting states in 

keyboard file.
151 Cannot use more than four toggle defini-

tions in keyboard file.
152 Read-only file on ý
153 File is hidden on ý
154 System file on ý
155 Name is volume label on ý
156 Name is subdirectory on ý
157 Cannot be written to on ý
158 Cannot copy to same file.
159 Sort record is too large.
160 No more files that match specification.
161 |Still printing--exit anyway? (Y/N)
162 Item is currently not available.
163 �Disk is full writing to overflow file--free 

up space on drive c:û
164 No alternates for &
165 Invalid default setting &
166 Column format is not recognized.
167 Cannot find style. &
168 File contains too many styles.
169 Enter number greater than zero.
170 Working...
171 Function requires source file and target 

file.
172 |Keyword Found, Action? C=continue, 

O=open, N=next file, S=stop
173 Checksum error.
174 Cannot mix relative and absolute values.
175 Relative values are not acceptable.
176 Frame type is not recognized.
177 File contains an incomplete frame defini-

tion.
178 File has an unbalance {{ }}.
179 File is missing {{.
180 Window specification is not recognized.



181 Screen length cannot exceed 70 lines.
182 Function requires two open files.
183 |Disk is full writing to overflow file--stop 

current operation? (Y/N)
184 AUTO
185 Definition is missing from printer file.
186 Width table is missing from printer file.
187 Substitution table is missing from printer 

file.
188 Inserted text found. Use filename to print 

to screen.
189 | S o r t  f i l e s  b y  F = F i l e  

Name,E=Extension,D=Date,S=Size,P=Pa
t h , R = R e v i s i o n , H = H e a d e r , T = U s e  
Tab,N=No tabú

190 |Enter drive letter to store on.
191 |Diskette full. Insert new diskette and type 

Y to continue.
192 |Save files as quitn.tmp? (Y/N)
193 Write protect.
194 Unknown unit.
195 Drive is not ready.
196 Unknown command.
197 Data error.
198 Bad request structure.
199 Seek error.
200 Unknown media.
201 Sector not found.
202 Printer out of paper.
203 Write fault.
204 Read fault.
205 General failure.
206 Save edits to &
207 Composition stopped--disk full writing to 

overflow file.
208 Table values are not recognized.
209 Value in counter is not recognized.
210 Counter value must be between 0 and 14.
211 Roman numeral is not recognized.
212 Place cursor on marker.
213 Invalid function.  #
214 File not found.  &
215 Path not found.  &
216 Too many open files.
217 Access denied.
218 Invalid handle.
219 Memory control blocks destroyed.
220 |Type new character.
221 Invalid memory block address.
222 Invalid environment.
223 Invalid format.
224 Invalid access code.

184      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages

225 Invalid data.
226 DOS error.
227 Invalid drive.
228 Cannot remove current directory.
229 Not same device.
230 No more files.
231 Function does not accept arguments.
232 Not enough memory. Page numbers are 

not accurate.
233 Not enough memory to calculate page 

breaks.
234 New Form requires new filename and 

filename of master form.
235 Unrecognized characters in filename.
236 Decimal point cannot equal numeric or 

argument separator.
237 Cannot look up double words.
238 No files selected.
239 Press Esc to return to Cartridge List.
240 RFT conversion failed.
241 Cannot insert row outside of table.
242 Substitution tables must be put inside 

printer file.
243 �Error loading overlay.
244 �Overlay mismatch.
245 �Not enough memory for overlay.
246 �Error reading EDITOR.EXE.
247 Personal dictionary is not loaded.
248 Function is not available while Track 

Changes is on.
249 Function canceled.
250 Function is not available in expanded 

view.
251 |Change? Y=yes, N=no, S=stop here, 

O=one more, U=undoú
252 Function canceled.
253 Cannot find redlined text.
254 Making temporary file. Do not remove 

x:û
255 OK to remove x:û
256 Overlay ID not recognized.
257 word.ovr
258 �Disk is full. Cannot create overflow file.
259  items processed
260 Type a character.
261 SPELL.TMP
262 |Terminate column select operation? (Y/N)
263 .SAV
264 [UNTITLED]
265 OEIDCBHFLRNS
266 Menu/Help file not loaded.
267 Esc  1,Single  2,Double  3,*  4,Move cur-

sor  5,Delete  6,New character
268 Function is not available in tables.



269 Accent is not defined.
270 SHELL=
271 No text data in clipboard.
272 Press space to continue undeleting.
273 Composition stopped--too many page ele-

ments.
274 Do you want to perform this change? 

Y/N/C
275 GSLIB
276 SWGS.LIB
277 Logoff accepted.
278 lexis
279 Too many TE controls.
280 Not allowed in Ibid. record.
281 Specify group\style name.
282 Style is too big.
283 JANUARY
284 FEBRUARY
285 MARCH
286 APRIL
287 MAY
288 JUNE
289 JULY
290 AUGUST
291 SEPTEMBER
292 OCTOBER
293 NOVEMBER
294 DECEMBER
295 TRUE
296 FALSE
297 PCLEXAM.DLL
298 .OVR
299 AMPM
300 DMY
301 HVFBTLRNAXC‘ M
302 DCRL
303 YNI
304 OoIAsRXNSCrc
305 TGCDLRIHXZ‘ A
306 |Double word encountered--delete second 

occurrence? (Y/N) &
307 IXPNCH
308 NTS
309 CAPS
310 SHIFT
311 ALT
312 CTRL
313 ALNSXWO
314 Press Esc to remove menu.
315  words, * questionable
316 String too large for filter.
317 Reset &View

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      185

318  changes
319 |Canno t  recove r  changes --p roceed 

anyway? (Y/N)
320 PV cannot find macro.
321 Not currently implemented.
322 FRWNLAD
323 Nothing has been deleted.
324 PV error converting to string.
325  occurrences
326 Cannot compare number to string.
327 |Recording keystrokes.
328 No keystrokes have been recorded.
329 Table has not been loaded.
330 #X function requires letter or number.
331 Proceed
332 Sharing violation.
333 Lock violation.
334 Invalid disk change.
335 FCB unavailable.
336 XX
337 Close text command window.
338 Cannot read/write string.
339 Buffer at maximum size.
340 No memory to expand buffer.
341 Unable to open menu window.
342 Cannot get printer device.
343 Unable to start print job.
344 "JA R1,...,Rn Ri = >n | n | n1-n2"
345 JA arguments must be in descending 

order.
346 Show journal.
347 View
348 EB Script %s incorrect number of argu-

ments
349 TEXT.LIB
350 Network request not supported.
351 Remote computer not listening.
352 Duplicate name on network.
353 Network name not found.
354 Network busy.
355 Network device no longer exists.
356 Network adapter hardware error.
357 Net BIOS command limit exceeded.
358 Incorrect response from network.
359 Unexpected network error.
360 Incompatible remote adapter.
361 Print queue full.
362 Not enough space for print file.
363 Print file was deleted.
364 Network name was deleted.
365 Access denied.
366 Network device type incorrect.
367 Network name not found.



368 Network name limit exceeded.
369 Net BIOS session limit exceeded.
370 Temporarily paused.
371 Network request not accepted.
372 Print or disk redirection is paused.
373 Error reading text library.
374 Too many different outlines.
375 More than one initial outline element.
376 Reference to undefined id.
377 Error in outline structure.
378 Unrecognized KY type.
379 Could not find specified outline.
380 File exists.
381 Could not write paragraph index/outline.
382 Cannot make directory entry.
383 Fail on INT 24.
384 Too many redirections.
385 Duplicate redirection.
386 Invalid password.
387 Invalid parameter.
388 Network data fault.
389 Read-only file.
390 Please log on.
391 File overflow. Not all files are listed.
392 File not found.
393 Cursor must be within a database para-

graph
394 MOUSE
395 Cannot turn on mouse pointer. Need 

driver or mouse.
396 Not enough memory to use mouse.
397 Not enough keys for mouse.
398 Cannot move selected block from read-

only file.
399 Cannot sort on a selected column.
400 About ...
401 EDITOR: Close
402 Ok to close window?
403 EDITOR: End Session
404 Save files before ending?
405 EDITOR: Error Message
406 untitled
407 EDITOR: Quit
408 Nota Bene HELP
409 Default drive/directory
410    Directory of
411 |Print selected block? (Y/N)
412 |Print directory? (Y/N)
413 |File was modified--abandon changes? 

(Y/N)
414 Specify filename.
415 |Press (B) to select soft font, Enter to 

save.

186      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages

416 Use Style Manual or Citation Menu to edit 
program-generated content.

417 percent
418 tenths
419 hundredths
420 thousandths
421 Rules are not properly nested.
422 YES
423 NO
424 Subdirectories
425 |Save displayed file? (Y/N)
426 |File is already open:� G=Go to Exist-

i n g , O = O p e n  C o p y , R = R e a d 
Only,C=Cancel

427 Dialog items overlapped.
428 HVNU
429 Fonts are not loaded.
430 Cannot find graphic file. &
431 Not enough memory to load graphic file. 

&
432 Graphic is not in PCL format. &
433 Graphic is not in PCX format. &
434 Graphic is not in TIFF format. &
435 Cannot load PCL graphic file. &
436 Cannot load PCX graphic file. &
437 Cannot load TIFF graphic file. &
438 Scale is out of range.
439 XYIMAGE=
440 Graphic file is not bilevel. &
441 Remove filename from command line.
442 Unspecified image size &
443 UNLOAD command not recognized.
444 TYSIPAPOLBIO
445 CDMTSZ
446 Name                        Wt       Sty  Size  

Pitch  Or    Symbol Set
447 C  S  T  F  F N D  N V E  R V N A F 

SUPAFIFSSLMVNCLSNEOLX LCZ 
N T N L X Y R L S P U P W  N H H O N -
NASCNACLOAXFWSCEIWHOPDENE
O S O A F P I D O V S M B 
CRLGGCRHRFLBVEAFRESEXALFIO
NRSSXPALCLPRETXOXULI

448 Command switch is not recognized.
449 Frame type is not recognized.
450 Frame command requires semicolon.
451 |Select (P)erm, (T)emp, (B)uild, space to 

clear, Enter to create file.
452 Not enough printer memory to download 

fonts.
453 SPPRSUHLHYSOKBP+FOMNSFDGU1
          U2U3U4U5U6U7U8U9DFXDEBUI
454 Loading font file: &
455 Do you want to truncate? Y/N



456 Too many cartridges selected.
457 INWTLTABCRLBRSIS
458 PGPEFAFNRHRFCTSNSTNO
459 Style name is not recognized.
460 Not enough memory for command.
461 Cannot find border style.
462 Value is too large.
463 SCRFONTS.BIN
464 Function requires style name.
465  [Command Window]
466 Font not available.
467 |Load fonts into the printer? (Y/N)
468 Move the cursor out of the selected block.
469 Bad font name.
470 Cannot nest embedded commands.
471 Command argument is not recognized.
472 Not enough memory to load screen fonts.
473 PTB
474 MDCGHGHPINEGMCVG
475 System cannot support graphic mode.
476 Cannot select from this menu.
477 Program mode is on.  Press [Ctrl]+[Alt] + 

[:] to exit.
478 Not enough memory for printer matches. 

Reload printer file.
479 Not enough memory to load the width 

table.
480 Cannot select across page elements.
481 Cannot search for invisible commands.
482 Style name already exists.
483 Function is not available in command 

window.
484 Invalid line for dialog box &
485 Autosaving to TMP file...
486 Type EXIT to return to Nota Bene.
487 Number is out of range.
488 SX command requires a number.
489 Selected column is too large.
490 |Printer not ready--try again? (Y/N)
491 GCI-OGCI-RGCI-NGCI-P
492 Host communication error.
493 General Callable Interface control block 

is not recognized.
494 |Save on host? (Y/N)
495 |Print on host? (Y/N)
496 |Merge file from host? (Y/N)
497 AUTOSAV1.TMP
498 Function is not available in expanded 

view.
499 | C h a n g e  c a s e ?  L = l o w e r c a s e ,  

U=uppercase, F=first letter, O=OK
500 Font file is not recognized.

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      187

501 Zoom only available in graphic view.
502 |Press appropriate key to continue.
503 Application error ......
504 Application error ......
505 Application error ......
506 Not enough memory for dictionary.
507 Application error ......
508 Cannot find dictionary.
509 No synonyms in dictionary, alternates pro-

vided.
510 Application error ......
511 Invalid word construction.
512 Too many dictionaries are open.
513 Dictionary cannot be updated.
514 Personal dictionary is full.
515 Dictionary already exists.
516 Dictionary name is not recognized.
517 Cannot read dictionary.
518 Dictionary not initialized.
519 Invalid dictionary function.
520 Invalid token in dictionary list.
521 Invalid dictionary word
522 Illegal dictionary input flag combination.
523 Missing or illegal value in dictionary 

parameter area.
524 Dictionary passback area too small.
525 Cannot add to temporary dictionary.
526 Too many dictionaries.
527 Dictionary contains bad data.
528 Dictionary memory allocation error.
529 Dictionary file not found.
530 Dictionary path not found.
531 Cannot open dictionary file.
532 Dictionary access denied.
533 Dictionary sharing violation.
534 Dictionary general file I/O error.
535 Variable Name exists
536 File converted to RFT:DCA format.
537 Conversion canceled.
538 Source file is empty.
539 Cannot read source file.
540 Cannot write to target file.
541 File converted to Nota Bene format.
542 Conversion canceled.
543 Source file is missing RFT:DCA end unit.
544 Include unit requires text.
545 Cannot find outline directory.
546 Cannot download fonts to non-HP printer.
547 XXLPCPRPLCCCRCPCTM
548 XXTPCPBPTCCCBCPC
549 Text link is completed.
550 Cannot open link file.



551 Cannot read link file.
552 Cannot open conversion file.
553 Cannot write to conversion file.
554 Data conversion is not valid.
555 Cannot open exception file.
556 Cannot write to exception file.
557 Not enough memory for conversion.
558 Document is not recognized.
559 Not enough disk space for output.
560 Conversion document is too large for 

target.
561 There may be an error in conversion.
562 INDITWPIPTDPCMMMCIDDLI
563 Unrecognized page number value.
564 Error saving text macro.
565 New DR setting ignored (overflow file is 

open).
566 Cannot modify EG sett ing while in 

graphic view.
567 Wildcards must be in the same order on 

both sides of a change.
568 Function code is not recognized.
569 REVERSE.TMP
570 Function is not available in graphic view.
571 Cannot change display mode of read-only 

directories.
572 Printing done.
573 TYDESCCRIMRVRIRT
574 |Suspending Nota Bene--save files to 

AUTOSAV.TMP files? (Y/N)
575 Zoom to &
576 Mouse not supported for use in this 

window.
577 Cannot load printer file when printing.
578 Check margin settings (PW, IP, GU, LM, 

RM, etc.)
579 Function not available on command line.
580 Unrecognized macro id.
581 Top margin on this printer must be at 

least &
582 Line is too large for graphic view.
583 Function not available with column 

selected.
584 Graphic images are ignored for this 

printer.
585 Too many letters in file name.
586 Function requires selected text in current 

or previous window.
587  occurrences displayed.
588 Form field not found--no longer in forms 

mode.

188      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages

589 Line is too large to be printed in image 
mode.

590 Cannot print read-only directory to screen.
591 Cannot open marker--change to expanded 

view.
592 Press hot key again to go into TSR--press 

Esc to return to Nota Bene.
593 Cannot create RFT:DCA document with 

.DOC extension.
594 Error  in <BR> command--command 

ignored.
595 Error in <WM> command--command 

ignored.
596 |Edit port, printer file or printer name.  F9 

when done (Esc=exit).
597 |Enter screen/printer fonts.  Press F9 when 

done (Esc to exit).
598 |Enter Printer Fonts.  Press F9 when done 

(Esc to exit).
599 |Continue: Forward (Alt down-arrow), 

backward (Alt up-arrow) (Esc to exit).
600 |Edit dictionary file, then press F9 (Esc to 

exit).
601 |Type text for TOC, then press Shift+F1 

(Esc to cancel).
602 |Type text for index, then press Shift+F1 

(Esc to cancel).
603 |Position cursor and press F9 (Esc to exit).
604 |Select the text to protect, then press F9 

(Esc to exit).
605 |Select text to keep together, then press F9 

(Esc to exit).
606 |Move cursor to a footnote, then press F9 

(Esc to exit).
607 |Position cursor for endnotes, then press 

F9 (Esc to exit).
608 |Place cursor on footnote to be labeled, 

then press F9.
609 |Move cursor to the counter marker, then 

press F9.
610 |(X1) F5=heading, F6=selection, F7=insert 

text, Esc=exit.
611 |(X2) F5=heading, F6=selection, F7=insert 

text, Esc=exit.
612 |(X3) F5=heading, F6=selection, F7=insert 

text, Esc=exit.
613 |(X4) F5=heading, F6=selection, F7=insert 

text, Esc=exit.
614 |(X5) F5=heading, F6=selection, F7=insert 

text, Esc=exit.



615 | ( X 6 )  F 5 = h e a d i n g ,  F 6 = s e l e c t i o n ,  
F7=insert text, Esc=exit.

616 | ( X 7 )  F 5 = h e a d i n g ,  F 6 = s e l e c t i o n ,  
F7=insert text, Esc=exit.

617 | ( X 8 )  F 5 = h e a d i n g ,  F 6 = s e l e c t i o n ,  
F7=insert text, Esc=exit.

618 | ( X 9 )  F 5 = h e a d i n g ,  F 6 = s e l e c t i o n ,  
F7=insert text, Esc=exit.

619 |(X1) F5=word, F6=selection, F7=insert 
text, F8=subentry, Esc=exit.

620 |(X2) F5=word, F6=selection, F7=insert 
text, F8=subentry, Esc=exit.

621 |(X3) F5=word, F6=selection, F7=insert 
text, F8=subentry, Esc=exit.

622 |(X4) F5=word, F6=selection, F7=insert 
text, F8=subentry, Esc=exit.

623 |(X5) F5=word, F6=selection, F7=insert 
text, F8=subentry, Esc=exit.

624 |(X6) F5=word, F6=selection, F7=insert 
text, F8=subentry, Esc=exit.

625 |(X7) F5=word, F6=selection, F7=insert 
text, F8=subentry, Esc=exit.

626 |(X8) F5=word, F6=selection, F7=insert 
text, F8=subentry, Esc=exit.

627 |(X9) F5=word, F6=selection, F7=insert 
text, F8=subentry, Esc=exit.

628 |Turn off: P=page borders, A=all other 
borders  (Esc=exit.)

629 | S e l e c t  d i r e c t o r y .  F 1 = d i s p l a y  
files,F2=change dir,Esc=exit.

630 |Unprotect this block?  (Y/N) (Esc to 
exit.)

631 |Continue searching? (Y/N)  (Esc to exit.)
632 |Continue searching from top? (Y/N)  

(Esc to exit.)
633 |Not found, continue searching? (Y/N) 

(Esc to exit.)
634 |Not found, continue searching from top? 

(Y/N) (Esc to exit.)
635 |Set  bookmark:  F=fir s t ,  S=second,  

Esc=exit.
636 |Go to bookmark: F=first, S=second, 

Esc=exit.
637 |Allow this block to break across pages? 

(Y/N) (Esc to exit.)
638 |Delete? (Y/N) (Esc to exit.)
639 |Mark entry:  T=toc, I=index.  (Esc to 

exit.)
640 |Press K=keycodes, I=identify key, 

J=jump to table. (Esc to exit.)
641 |Press any key for its key code, Esc to 

exit.
642 Close command window before selecting 

this window.

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      189

643 Keyboard did not accept new repeat rate 
settings.

644 Invalid repeat rate settings--new values 
ignored.

645 Fields contain formatting commands--no 
longer in forms mode.

646 and
647 Cannot enter specified character in forms 

mode.
648 OK  to  ed i t  f i l e .  F 9=con t i nue ,  Es c 

twice=exit.
649 |Find latest files: C=current dir,S=incl. 

subdirs,E=entire disk
650 Reformatting for new printer file or 

default setting...
651 Type size is too large--default size used.
652 Not enough space to print all line num-

bers.
653 Image mode printing is not allowed for 

this printer.
654 Cannot alter image printing state while 

printer is active.
655 Funct ion not  avai lable  for  selected 

row/column in table.
656 Redlining not available when editing 

markers.
657 Page range not recognized--no page 

printed.
658 Screen/printer font mismatch--display is 

incorrect.
659 pronoun
660 verb
661 noun
662 adj
663 adverb
664 prep
665 interject
666 conj
667 Masc noun
668 Fem noun
669 verb pron
670 trans verb
671 intrans verb
672 plural noun
673 Endnote marker was inserted at the top of 

the file.
674 OK
675 Cancel
676 Options
677 Filename
678 Path
679 Help
680 Saving...



681 This is the help for "Custom Entry"
682 |Update Bitstream typeface fonts for Nota 

Bene?  (Y/N)
683 |Update font list? (Y/N) (Soft fonts and 

cartridges will be unloaded.)
684 Application error ......
685 Application error ......
686 Application error ......
687 Application error ......
688 To restore the view, press Ctrl+Shift+V 

or click on the System menu bar.
689 One character only.
690 Not allowed. (Press Esc to exit.)
691 <TAB>
692 <CR>
693 Canceled.
694 File name extension used:
695 File name extension added:
696 |You typed a period with no extension--

okay? (Y/N)
697 File will be saved without extension.
698 Specify outline counter or 0 to turn off 

outlining
699 Load either the main keyboard or the mini 

menus.
700 Select a file.
701 Creating SW.DFL failed. Cannot make 

permanent changes.
702 Creating SW.DFL...
703 Access to SW.DFL denied. Cannot make 

permanent changes.
704 File could not be created.
705 Edit Style,Define Style,Replace Style
706 copied from
707 DEFAULT
708 File contains default style.
709 Default style inserted.
710 This is a new untitled file.
711 .TPL
712 Nota Bene
713 Open File
714 Open Form
715 Press Ctrl+Shift+M to store this file.
716 Converting to native code page...
717 To view other windows, press F6.
718 Please select a file from list.
719 Full View
720 Punctuation not allowed in Style name.
721 Searching...
722 (A to Z)
723 (Most recent first)
724 (Largest First)

190      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages

725 .PGM
726 Cannot convert formats and switch to new 

file.
727 Selected text saved as:
728 .RFT extension added to file name.
729 Conversion files not properly installed.
730 Cannot find conversion files.
731 Conversion file not installed for
732 Internal menu error.
733 File saved to
734 Please select a format.
735 Converting from
736 Condition longer than 55 characters must 

be saved to a file.
737 Converting to
738 Excel
739 Lotus
740 Unframed
741 Uncropped
742 Compressed
743 Gray-scale
744 Color
745 Could not find file:
746 Conversion file not found.
747 CVT.RES file is missing in
748 Converting to TIF file. This may take 

some time...
749 Framed
750 Title
751 Title for Framed Graphic
752 Caption
753 Caption for Framed Graphic
754 Must specify both dimensions.
755 Cropped
756 GFX
757 8 characters maximum in label.
758 &Protect
759 Put cursor on "Link text" (LT) marker.
760 Un&protect
761 Operation canceled.
762 Linked text protected.
763 Linked text deleted.
764 &Filename             Size          Date      

Time
765 Display doc &info (Selective files)
766 Display doc &info (All files)
767 No files found in the selected range.
768 Filename
769 Size
770 Saved
771 Time
772 Author



773 Saved-by
774 Cr-date
775 Cr-time
776 Proj-no
777 Rev
778 Reten
779 Comment
780 Keyword
781 Cannot display more than 4 fields.
782 Press Update to calculate final size.
783 Final size is based on cropping and scale.
784 Width scaled for frame width:* *less gut-

ter.
785 Path already exists.
786 Error in deleting directory.
787 Directory was deleted.
788 Error in creating new directory.
789 New directory has been created.
790 Author name exceeded 40 characters.
791 Project Number exceeded 20 digits.
792 Document retention exceeded 4 digits.
793 Comment exceeded 44 characters.
794 Keyword exceeded 65 characters.
795 Word saved to Document Info.
796 Text saved to Document Info.
797 Cannot use numbers as labels - labels 

must include a letter.
798 Use a name that does not contain a 

comma or parenthesis.
799 Print file to local printer.
800 Print file to host printer.
801 Cannot print selected text or current page 

in different window or file.
802 Cannot chain displayed file, selected text 

or current page.
803 Print entire file?
804 Cannot chain selected page numbers.
805 Cannot print selected text to screen.
806 (Example) 1-3/6-8
807 Print to Screen
808 Print to File
809 Pause after pages
810 Application error ......
811 Multiple copies
812 Non-collate
813 Quality (Draft,...)
814 Reverse order
815 Simplex/Duplex
816 Printing to printer...
817 Printing to screen...
818 Printing to file...
819 Image mode turned on.

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      191

820 File does not exist:
821 Please close this file and try again:
822 Error opening file:
823 Printer file has been loaded:
824 Application error ......
825 Application error ......
826 Application error ......
827 Port
828 Printer File
829 Printer Name
830 Canceled (tried to close wrong file).
831 Please select a port and try again.
832 Please select a printer file and try again.
833 Description exceeded 34 characters. Extra 

characters were truncated.
834 No printer file found in printer path.
835 Please load a printer file and try again.
836 Cannot open printer file.
837 Internal menu error (tried to close wrong 

file).
838 No soft font files found.
839 The extension SFL was added.
840 The extension was changed to SFL.
841 .SFL
842 Close
843 All 9 windows are open.
844 Error - Printer file not found.
845 All 9 windows are open. Close a window 

and try again.
846 First select the text to cut, then try again.
847 Cut to Clipboard.
848 Appended to Clipboard.
849 First select the text to copy, then try again.
850 Copied to Clipboard.
851 Clipboard is empty.  First use Cut or Copy.
852 First select the text to delete.
853 First select the text to move.
854 Application error ......
855 Please load a dialog box (DLG) file.
856 Change case on selection not available in 

redlining mode.
857 You cannot protect a selected row in a 

column table.
858 Working...Screen will blank momentarily.
859 Selected text is protected.
860 Cursor is not in a protected block.
861 Selected text is now editable.
862 Rest of file from cursor forward is pro-

tected.
863 Protected block is shown selected.
864 Application error ......
865 Type the text.



866 Not found.
867 Type the search text and replace text.
868 Bookmark is set.
869 Second bookmark is set.
870 First set the bookmark.
871 Application error ......
872 Default set to fast edit view (this session 

only).
873 Default set to graphic view (this session 

only).
874 Default set to page-line view (this session 

only).
875 Default set to expanded view (this session 

only).
876 Application error ......
877 Number must be at least 5.
878 Number must be no more than 400.
879 Default set to Show Page Breaks.
880 Default set to Hide Page Breaks.
881 Value should be between .1 and 250.  Try 

again.
882 Application error ......
883 Block made non-breakable.
884 Selected text is already allowed to break.
885 Cursor is not inside a non-breakable 

block.
886 This block can now break across pages.
887 Copy existing style and modify it using 

menus.
888 Portrait
889 Landscape
890 Function requires an open file.
891 cpi
892 prop. width
893 normal
894 bold
895 italic
896 Please select a color from list and try 

again.
897 Please select colors from lists and try 

again.
898 Pick up format at cursor and modify it 

using menus.
899 Type the name of the style to apply.
900 This document contains no styles.
901 Edit the style definition.
902 Select a style first.
903 Style not found.
904 Please name a style.
905 Define style automatically using format at 

cursor.
906 Style definition inserted at top of file:
907 Styles for file

192      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages

908 No more windows available.
909 Choose "Print" from the File menu to print 

this list.
910 Could not create new window.
911 Close this file when done.
912 Cannot save current settings permanently.
913 Saving settings...
914 Current page:
915 Envelope feed is located in center of tray.
916 Envelope feed is located at edge of tray.
917 No radio button was selected.
918 and
919 Cannot create snaking columns inside a 

column table.
920 Number of columns must be between 1 

and 12.
921 Left margin is too small to fit left border.
922 Header
923 Create Header
924 Application error ......
925 Create Footer
926 Application error ......
927 Page
928 of
929 Not yet implemented.
930 To insert page number, choose "Insert 

Other" from Options.
931 Try inserting a footer again when docu-

ment contains two pages.
932 Type text in this window for
933 Footer
934 Edit the running header by modifying the 

RH command.
935 Edit the running footer by modifying the 

RF command.
936 Left,Right,Inside,Outside
937 Application error ......
938 No alternatives, type in correction.
939 You need to load a personal dictionary 

first.
940 You cannot use "*" or "?" in a filename.
941 Error -- wrong file.
942 Changes not saved.
943 Spelling file reloaded:
944 Please choose a main dictionary.
945 The dictionary does not contain the exten-

sion DIC.
946 Please specify the filename for the diction-

ary.
947 You must close this file before batch spell-

checking.



948 Choose file, get unknown words, and 
make corrections.

949 Apply corrections to the original file.
950 Put insertion point in column to move and 

press F9 (Esc to exit).
951 Put insertion point in row to move and 

press F9 (Esc to exit).
952 Put insertion point in column to move TO 

and press F9 (Esc to exit).
953 Put insertion point in row to move TO 

and press F9 (Esc to exit).
954 Appears only when word breaks at end of 

line.
955 Application error ......
956 Application error ......
957 Keyboard: Tilde key (E)
958 Keyboard: Ctrl-Shift-H
959 Keyboard: (Changed from standard key, 

see Defaults.)
960 For words that always require a hyphen
961 Keyboard: Hyphen key (located above 

"P")
962 For minus sign and proper nouns
963 Keyboard: Minus (on keypad)
964 Application error ......
965 Nota Bene
966 Number of words in entire document:
967 Number of words from cursor forward:
968 Number of words from start of file to cur-

sor:
969 Number of words in selected block:
970 Redlining is ON.
971 Redlining is OFF.
972 Application error ......
973 Please choose two files.
974 Page break takes effect on next line.
975 Please check date and time and select a 

format.
976 Cannot choose "Final page number" with 

"Starting page no."
977 Cannot choose "Combination" with 

"Starting page no."
978 Special Characters
979 Latin/Germanic Based Accented Charac-

ters
980 Mathemat ica l  Symbols  and  Greek 

Characters
981 Lines, Corners, and Intersections
982 Punctuation and Accents
983 Standard
984 Cannot create a table inside a table.

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      193

985 Number of columns must be between 1 
and 12.

986 Cursor is not inside a table.
987 Please select the text and try again.
988 Cannot convert if there are more than 12 

tabs in a line.
989 Character added to User Set.
990 Character removed from User Set.
991 Character is already in User Set.
992 Type, copy, or move text into this window.
993 No borders defined.
994 Border not found:
995 This border name is reserved:
996 This border already exists.  Try another 

name.
997 This border is reserved and cannot be 

applied:
998 Type the text for the footnote.
999 Edit the footnotes.
1000 Footnote Separator
1001 Footnote Wrap Separator
1002 No footnote format found before the cur-

sor.
1003 Please specify the starting number and 

style.
1004 Enter the footnote separator.
1005 Enter footnote wrap separator.
1006 "No Footnotes" marker was inserted at top 

of document.
1007 Footnotes will be placed here.
1008 Marker inserted.  Footnotes will be placed 

at this point.
1009 (continued)
1010 Press "Define" to append to a macro.
1011 No text selected.  Select text and try again.
1012 Enter single-digit letter or number.
1013 Cannot add text to a program macro.
1014 Text added to key:
1015 Text saved to key:
1016 DICT.SPL is the main dictionary and can-

not be edited.
1017 Application error ......
1018 Cannot edit. This key is empty.
1019 This key is already empty.
1020 Macro removed from key:
1021 Cannot print.  This key is empty.
1022 No window available to set up printing.
1023 To print this macro, choose "Print" from 

the File menu.
1024 Macro set saved to file:
1025 Choose "Close" from File menu when 

done.
1026 Error loading file:



1027 Macro file loaded:
1028 Macros have been cleared from memory.
1029 [Empty]
1030 Program:
1031 [Program]
1032 Text:
1033 To print this list, choose "Print" from the 

File menu.
1034 Macros
1035 Application error ......
1036 Application error ......
1037 Outline Level
1038 You have not defined the outline format.
1039 I|A|1|a|1|a|i|
1040 1|a|i|1|a|i|1|
1041 ||||(|(||
1042 |||(|(|(||
1043 .|.|.|)|)|)|)|
1044 .|.|.|)|)|)|)|
1045 Outlining was not on.
1046 Original format restored.
1047 Enter new value...
1048 Marker inserted at cursor.
1049 Marker inserted at top of file.
1050 Sequence not found.
1051 Cursor is not on a footnote marker.
1052 Label added to footnote.
1053 Cursor is not on a counter marker.
1054 Label added to counter.
1055 Please select the text first.
1056 Selected text contains a style. Use F5 or 

select other text.
1057 Cannot find the marker for end of TOC.
1058 aardvark, 15|afghan hound, 18|ape, 

27|baboon, 14|banana, 13
1059 Place TOC Marker
1060 Place Static TOC
1061 Automobile
1062 This is the TOC.
1063 Generating TOC for marker #
1064 Unexpected error in generating the TOC.
1065 This is index format.
1066 Must fill "Sub level1" if "Sub level2" is 

filled.
1067 Searching for an existing index...
1068 Cannot find the marker for end of index.
1069 Searching for an index format...
1070 Place Index Marker
1071 Place Static Index
1072 This is the index.
1073 Generating index for marker #
1074 Unexpected error in generating the index.
1075 The symbol ""#"" represents the letter 

separator.

194      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages

1076 MEMOPAD
1077 Please type in a file name.
1078 Invalid file name.
1079 Try another file name.
1080 T ype  you r  comme nt s .   T h en  p re s s 

"Ctrl+Shift+M" to store.
1081 ALL
1082 First select the lines to sort.
1083 This is the sorted file.
1084 (No message)
1085 No more stop codes.
1086 Application error ......
1087 Application error ......
1088 Could not get text from document.
1089 This document is built from:
1090 Error generating the file.
1091 Enter field names in the same order as in 

the Data File:
1092 The following field names already exist in 

Field ID:
1093 Field ID modified at top of file.
1094 Field ID inserted at top of file.
1095 Application error ......
1096 Cannot open data file. Close a window and 

try again.
1097 Error in reading the data file.
1098 Error - record separator is contained in 

field separator.
1099 There is no record separator in the data 

file.
1100 Application error ......
1101 Application error ......
1102 First select conditional text in Main file.
1103 Put text if:
1104 Put Text Conditionally
1105 Select records where:
1106 Select Records Conditionally
1107 Extract records where:
1108 Extract Records Conditionally
1109 Include text if:
1110 Include Text Conditionally
1111 Main|Cycle
1112 Select a field and relation from the lists, 

then try again.
1113 Value is ignored with the selected relation.
1114 Value is not a number. "Numeric" check 

box is ignored.
1115 Neither radio button was selected.
1116 A field is missing from the Field ID com-

mand.
1117 This is preview of first record.



1118 This is for preview only, not for editing.
1119 Application error ......
1120 All records
1121 .FRM
1122 Cannot create untitled form in different 

path.
1123 Error saving keystrokes.
1124 Error saving file to key.
1125 File saved to key:
1126 Keystrokes saved to key:
1127 Keystrokes saved to file:
1128 Error saving file.
1129 Macro key saved to program file:
1130 Application error ......
1131 File already exists:
1132 Error in creating file:
1133 Please select a category from the list and 

try again.
1134 Please select an entry from the list and try 

again.
1135 Cannot make permanent changes. File not 

found:
1136 Settings not recognized:
1137 Access denied. Cannot make permanent 

changes.
1138 New file SETTINGS.TMP could not be 

loaded from:
1139 SETTINGS.TMP
1140 Cannot use same separator for records 

and fields.
1141 Main dictionary path
1142 No printer file is loaded.
1143 Printer file does not exist.
1144 Printer file is open.
1145 Error in opening printer file.
1146 Error in writing to printer file:
1147 Printer file does not exist:
1148 Please specify the autosave intervals.
1149 Application error ......
1150 Error in loading the color set file.
1151 Error in saving the current set.
1152 In expanded view, markers always show.
1153 Cannot open Macro Set file -- it is binary, 

not ASCII.
1154 Cannot open file.
1155 Please specify the backup filename.
1156 Application error ......
1157 Cannot find tutorial. Refer to installation 

procedure.
1158 Tutorial directory not found:
1159 TBOOK.EXE SWTUTOR.TBK
1160 ALTMENU
1161 C a n n o t  f i n d  A L T M E N U . P G M  o r  

ALTMENU.MNU

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      195

1162 .INT
1163 Lost track of menu file to return to.
1164 Application error ......
1165 Loading
1166 Select fewer characters (only 75 allowed).
1167 |Search which drive?
1168 List all files on drive
1169 No keyboard table in this file.
1170 Application error ......
1171 Press any key for key code.
1172 not found.
1173 Keycode
1174 No equal sign (=) found.
1175 Wrong format for keycode.
1176 F
1177 No SHIFT table found.
1178 is key
1179 is not a letter or number key.
1180 .TMP
1181 .TPL
1182 .PRN
1183 .DSP
1184 .DFL
1185 .KBD
1186 .HLP
1187 .SPL
1188 .HYP
1189 Changes to this file have not been saved
1190 Changes to this file have been saved
1191 LOAD.TMP
1192 .MNU
1193 TEMP.MNU
1194 Saving to
1195 File must be open.
1196 PRINT.TMP
1197 |Print the selected block in expanded 

view? (Y/N)
1198 |Print the entire file in expanded view? 

(Y/N)
1199 Close all open files and try again.
1200 RESUME.PGM
1201 RESUME.SGT
1202 Cannot find file:
1203 Press F9 to execute.
1204 Error.
1205 This key is not currently assigned.
1206 Load either the mini keyboard or the main 

menus.
1207 A menu subroutine is missing. (Menu: 

$...Subroutine: $)



1208 Application error ......
1209 Choose one to RUN:
1210 Choose one to LOAD:
1211 Page Length
1212 Page Width
1213 Type
1214 Other
1215 |Delete marker for old header? (Y/N)
1216 Immediately
1217 At print time
1218 (Chapter number not available in header)
1219 Columns,Tables,Frames,Pages
1220 Create,Edit
1221 Height,Width
1222 F-WINDOWS
1223 only if Nota Bene cannot import source 

format directly.
1224 regardless of source format.
1225 Cannot draw with proportional font.
1226 RESUME.DEL
1227 

TEXTIN.FLT,TEXTOUT.FLT,SPREAD.
FLT,DATABASE.FLT,GRAPHIC.FLT

1228 Application error ......
1229 Print queue is full--please wait.
1230 PLFITILN
1231 Invalid format bar item &
1232 Spooler General Error
1233 Spooler, Printing canceled from program
1234 Spooler, Printing canceled from Print 

Manager
1235 Spooler, Out of disk space
1236 Spooler, Out of memory space
1237 Application error ......
1238 Printer setup error.
1239 XWRIM.DLL
1240 XWREX.DLL
1241 Unable to load RFT filter.
1242 .SG1
1243 .TP1
1244 .SP1
1245 .TM1
1246 .FM1
1247 SWBMP.DLL
1248 SWHELP.HLP
1249 CMHelp
1250 CR
1251 Error loading Windows printer fonts.
1252 Function not available using Windows 

fonts.
1253 Printer port not specified.
1254 TFGF

196      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages

1255 Cannot find DLL.
1256 Cannot rename -- target file already exists.
1257 Error Number &
1258 DDE transaction timed out.
1259 DDE is out of memory.
1260 No DDE conversations established.
1261 DDE conversations established.
1262 DDE server died.
1263 DDE error.
1264 DDE server is busy.
1265 Cannot change number of columns in table 

edit.
1266 Column numbers are out of sequence.
1267 Invalid DDE conversation number.
1268 Unable to transfer DDE data.
1269 Left margin/offset on this printer must be 

at least &
1270 Bottom margin must be at least &
1271 0 (No font family)
1272 1 (Serif)
1273 2 (Sans Serif)
1274 3 (Monospace)
1275 4 (Script)
1276 5 (Decorative)
1277 DoCommand DoFunc PutString PutChar
1278 Invalid DDE item.
1279 Invalid DDE Execute subcommand.
1280 Invalid DDE topic.
1281 No DDE help available.  (Need .DLG file 

with /E frame.)
1282 Requires 8 character string.
1283 Label
1284 Internal ATS error, save files and exit 

NOW.
1285 LPT
1286 Function not available under Windows.
1287 Too many color changes in one line.
1288 Change failed.
1289 [UNLABELED]
1290 Bad printer driver DLL.
1291 device
1292 No Nota Bene printer file loaded. Printing 

disabled.
1293 settings
1294 No screen fonts. Cannot go into graphics 

view.
1295 Cannot use mixed font mode. No Speedo 

fonts.
1296 Windows driver problem. Use Nota Bene 

driver.
1297 Using Windows device: &
1298 Using Nota Bene driver: &



1299 No Nota Bene driver loaded. SPEEDO 
fonts used.

1300 No printer file loaded. Cannot go into 
graphics view.

1301 When using Windows device drivers, 
SETP not allowed.

1302 No printer device with this number.
1303 Directory list
1304 AaBbCcXxYyZz
1305 Command not allowed when using Nota 

Bene driver.
1306 Job
1307 When using Windows device drivers, no 

reverse collation printing.
1308 Cannot open Untitled file.
1309 Two or more snaking columns occupy 

same position on page.
1310 Cannot minimize command window.
1311 Cannot print BMP graphic file with Non-

Windows driver. &
1312 Bad printer font type.
1313 CWSPXR
1314 No width table for this font definition.
1315 Language Code not supported.
1316 Bad PR Keyword in printer file.
1317 zero
1318 one
1319 two
1320 three
1321 four
1322 five
1323 six
1324 seven
1325 eight
1326 nine
1327 ten
1328 eleven
1329 twelve
1330 thirteen
1331 fourteen
1332 fifteen
1333 sixteen
1334 seventeen
1335 eighteen
1336 nineteen
1337 twenty
1338 thirty
1339 forty
1340 fifty
1341 sixty
1342 seventy
1343 eighty

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      197

1344 ninety
1345 hundred
1346 thousand
1347 million
1348 billion
1349 dollars
1350 cents
1351 Indentation exceeds right margin.
1352 Article
1353 adj
1354 adverb
1355 adj & adv
1356 noun
1357 verb
1358 pronoun
1359 prep
1360 numeral
1361 exclamation
1362 interject
1363 conj
1364 SMI not enabled in WIN.INI - Email func-

tions not available.
1365 Inches
1366 Centimeters
1367 Picas
1368 Points
1369 Ciceros
1370 Paragraph
1371 Document End
1372 Next Command
1373 Current Selection
1374 Ovr
1375 Ins
1376 Num
1377 Cap
1378 Bad Rule Syntax --&
1379 MISSING IF &
1380 MISSING LEFT ( &
1381 MISSING RIGHT ) &
1382 SYNTAX OR UNRECOGNIZED SYM-

BOL &
1383 DOMAIN ERROR IN FUNCTION &
1384 DIVIDE BY ZERO &
1385 MISSING QUOTE &
1386 MIXED TYPES &
1387 Please select an item.
1388 Must specify database file using the GF 

default
1389 Can't find Entry Point for EB script %s, 

error= %d
1390 Can't create Window for EB script %s



1391 EB Script %s Compile error %d at line 
%d,character pos %d

1392 No code to ECompile error on EB script 
%s

1393 Cannot create script %s, error= %d
1394 Cannot create thread for script %s, error= 

%d
1395 EB Script %s runtime error, code= %d, 

line= %d
1396 Error registering private application 

extensions.
1397 EB E{µE¡¦EÓ¤Ej¤, ELµEkªEõ°Eæ¦
1398 Eò¿E|º BEGINEBX E³E¡¦
1399 Eò¿E|º ENDEBX E³E¡¦
1400 El·E´·Eºª DLG EÎ© EBX EÉÀE×
1401 Nota Bene EBX Eï¹EÜ¸E°²Es½Eè¿Eû
1402 |Enter an arithmetic operator.\n +,-,*,/
1403 |Press any key to continue Debugging.\n\*
1404 |Press any key to continue XPL.\n\*
1405 |Press '0' to move down, '1' to move up, '2' 

move to top, '3' move to bottom.\n 0,1,2,3
1406 |Press '0' to insert IN FRONT, '1' to insert 

BELOW, '2-5' refer Doc\n 0,1,2,3,4,5
1407 |Enter '0' to turn off dispaly of graphics, '1' 

to turn it on. \n 0,1
1408 |Enter '0-7' for language selection.\n 

0,1,2,3,4,5,6,7
1409 |Enter '0-9' for AutoSpell,AutoReplace or 

A u t o T r a n s l a t e  a r g u m e n t . \ n  
0,1,2,3,4,5,6,7,8,9

1410 |Enter '0-9' for Bookmark number OR 'G' 
to Goto Bookmark.\n G,0,1,2,3,4,5,6,7,8,9

1411 |Enter '0-9' for BookMark number.\n 
0,1,2,3,4,5,6,7,8,9

1412 |Enter '0-9' for Journal Restore level.\n 
0,1,2,3,4,5,6,7,8,9

1413 | E n t e r  ' 0 - 9 '  f o r  O u t l i n e  l e v e l . \ n  
0,1,2,3,4,5,6,7,8,9

1414 |Enter '0-9' or 'A-Z' for Window ID.\n \*
1415 |Enter '0-9', Hyphen, 'O' ... for wild card 

specifier.\n O,0,1,2,3,4,5,6,7,8,9
1416 |Enter '1-6', transpose function type.\n 

1,2,3,4,5,6
1417 |Enter a character for the XPL or function 

argument.\n \*
1418 |Enter a character in the password.\n \*
1419 |Enter a character for the Macro id.\n \*
1420 |Enter '0' to response must use keyboard, 

'1' allow response from XPL.\n 0,1
1421  variables updated.
1422 999/999-99.99IN
1423 12:59PM

198      Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages

1424 Save Changes?
1425 |Enter '0' to reset elapsed time, '1' to initial-

ize clock to timing mode.\n 0,1
1426 |Do you want to delete rule? (Y/N)
1427 Unrecognized outline option.
1428 Outline command skipped a level.
1429 Outline command missing level number or 

icon arguments or level too big.
1430 Please specify an object id.
1431  was not found.
1432 No objects to update.
1433 |Versions don't match, update anyway? 

(Y/N)
1434 was too short.
1435 Error updating library, update aborted.
1436 Paragraph was not marked as modified, 

update anyway? (Y/N)
1437 Label not found.
1438 Specify LG,GC,OB,OL,CR,CM,TO.
1439 R P : [ B e g i n  n e w  s e s -

sion]:CL:Comment:CC:UC:LC:Insert:Del
ete:Group:

1440 Can't edit more than one command at a 
time.

1441 P T S IDH W   D STPGF
1442 Get newest version? (Y/N)
1443 No miscellaneous subject specified--

proceeding anyway.
1444 Object  Explanation:
1445 View:
1446 Note:
1447 Comment:
1448 Caution:
1449 Stop:
1450 Drafting Tip:
1451 Explanation:
1452 Rule:
1453 Alternate Rule:
1454 Alternate Rule:
1455 Object: 
1456 Variable: 
1457 Variable  Explanation:
1458 Q & A:
1459 Rule: (TRUE)
1460 Rule: (FALSE)
1461 Reserved:
1462 Reserved:
1463 Reserved:
1464 Processing Embedded Commands.
1465 Composing Pages.
1466 Refreshing Variables.
1467 GTSGT needs a save get id.



1468 |E n t e r  ' 0  -  9 '  f o r  V B  k e y c o d e .  \ n  
0,1,2,3,4,5,6,7,8,9

1469 Specify PO, NO, SF, EF (prev/next out-
line, start/end file).

1470 Specify 0M to move up, 1M to move 
down, 0C, 1C for copy.

1471 Accessing Database.
1472 Starting variable refresh.
1473 Specify command to put at top of file.
1474 BLDSEQ requires a sequence number 

and a create/replace flag.
1475 JRNGRP requires number greater than 0.
1476 SAVCLN requires an output file name.
1477 SAVCLN--could not open output file.
1478 SAVCLN--error writing output file.
1479 OLN--too many alternates.
1480 Unrecognized extended command.
1481 Unrecognized LOOP (LP) type.
1482 No QRY= keyword in LP command.
1483 Too many nested loops.
1484 Cursor is not in the range of a loop.
1485 |Selection contains unbalanced rule; 

extend selection to balance? (Y/N)
1486 |Selection contains a partial outline level; 

extend to full level? (Y/N)
(If you answer No and then delete, the document 

structure may be corrupted.)
1487 Component appears twice in object:
1488 Object missing close OB:
1489 Close OB without Open:
1490 Rule imbalance in object:
1491 Component(s) missing or out of order:
1492 Selection contains a partial framework 

component; extend to entire? (Y/N)
(If you answer No and then delete, the document 

structure may be corrupted.)
1493 Change will not take effect until next 

page.
1494 This is an authored template, and only an 

author may edit it.  You may copy it and 
modify your copy.

1495 
«OBO/LF»«USLEVEL@OL»|«OBO/CO
»«USCOUNTER@OL»|«OBO/DE»|«OB
O/TF»«USTITLE@OL»|«OBO/TI»|«OB
O/TE»«USTITLEEND@OL»|«OBO/BF»
«USBODYTEXT@OL»|«OBO/BT»|

1496 Too many different TOL items.  Reuse an 
existing name

1497 N e e d :  T O L  
digit,name,mnemonic1,...,mnemonicn.

1498 Not within a help link.

Appendix: NB DOS XPL Error Messages; List of XyWrite Error Messages      199

1499 User security level is less than the object 
security level.

1500 The editing position is not in an object.
1501 CHGAL requires a value between 0 and 9.
1502 The editing position is not in an valid 

object.
1503 Application error ......
1504 Application error ......
1505 Too many suppression strings.
1506 |Enter 4 hex digits
1507 Invalid keystroke
1508 Too many mode commands on one line
1509  changes...
1510 ÛÛÛÛ



US Keyboard

200                                                                            Appendix II: Keyboard Diagrams



 UK Keyboard

Appendix II: Keyboard Diagrams                                                                            201



Index

v A v 
Abandon a file without having to confirm ............................................................................................................ 25
Access Menus from Keyboard ........................................................................................................................... 170
Apostrophes, Words with ................................................................................................................................... 169
Append and APT (APpend to Top of file) commands ....................................................................................... 165
Appending to a Phrase in Programs ................................................................................................................... 161
Argument (definition) ........................................................................................................................................... 54
Argument Insert .................................................................................................................................................... 66
as .......................................................................................................................................................................... 66
Assign Leader ....................................................................................................................................................... 24
Auto-Replace / Auto-Expand ............................................................................................................................... 11
Auto-replace off ................................................................................................................................................. 158

v B v 
BX Notes, from Carl Distefano’s BX Tutorial ................................................................................................... 166

v C v 
Carriage Return Wildcard .................................................................................................................................. 159
CH and CI .......................................................................................................................................................... 159
Change preceding punctuation ............................................................................................................................. 25
Chevrons .............................................................................................................................................................. 10
cl ........................................................................................................................................................................... 65
Close a Prompt Window ..................................................................................................................................... 168
Codes, full list .................................................................................................................................................... 105
Column Location .................................................................................................................................................. 65
Comma in keyboard tables ................................................................................................................................... 19
Command Brackets .................................................. 10, 22, 24, 49, 53, 61, 75, 78–79, 92–93, 105, 160, 166, ii, v
 insert, search for, 78
Comment, Commenting string .......................................................................................... 8, 13, 19, 48, 90, 95, 159
Compendium of Xy4/XyWin/NBWin Variables ................................................................................................ 131
Containment Operator
 eth—ð (ASCII 240), 69
 î (ASCII 238), 68
CoNVert ............................................................................................................................................................... 70
Count Up Operator ............................................................................................................................................. 163
cp .......................................................................................................................................................................... 65
Cursor Position ..................................................................................................................................................... 65

202                                                                                                                             Index



v D v 
Dorothy Day ........................................................................................................................................................... v
Default Command .................................................................................................................................................. 8
Default settings ....................................................................................................................................................... 7
 changing for session, 8
Defaults ................................................................................................................................................................ 77
Defined Blocks in Programs ............................................................................................................................... 160
Delete and Backdelete by phrase .......................................................................................................................... 25
Disclaimer ............................................................................................................................................................. iii
Carl Distefano .................................................................................................................................... 158, 166, i, iv
Double angled bracket .......................................................................................................................................... 10
Double Straight Quotation Marks ........................................................................................................................ 52
Drag Files into NB from Explorer or PowerDesk .............................................................................................. 164
Dragonfly ............................................................................................................................................................... v
DX ...................................................................................................................................................................... 159
DX and DO .................................................................................................................................................... 74, 94
 using in pairs, 31

v E v 
Echo Phrase to Prompt Line ............................................................................................................................... 161
ei ........................................................................................................................................................................... 58
Element of ............................................................................................................................................................ 68
Embedded Commands .................................................................................................................................... 47, 75
 in programs, 75
 searching for, 75
Embedding Codes in Programs ............................................................................................................................ 91
Embedding Program Calls in Programs ............................................................................................................... 92
End If .................................................................................................................................................................... 58
Endless Loop ........................................................................................................................................................ 97
er .......................................................................................................................................................................... 62
ERror .................................................................................................................................................................... 62
Error Messages ..................................................................................................................................................... 75
Error Suppression ................................................................................................................................................. 63
Errors in CPG ........................................................................................................................................................ iii
es .......................................................................................................................................................................... 63
es 1 ....................................................................................................................................................................... 95
eth—ð (ASCII 240) containment operator ................................................................................................... 69, 162
Euroquotes ............................................................................................................................................................. ii
ex .......................................................................................................................................................................... 62
ex1 ........................................................................................................................................................................ 62
EXit ...................................................................................................................................................................... 62
Extended Phrases ................................................................................................................................................. 74
Extract String ....................................................................................................................................................... 60
 program using parsing, 85

v F v 
Format brackets .................................................................................................................................................... 10
Func + Wildcard on Command Line or in Text ................................................................................................. 168
Func NN ............................................................................................................................................................. 168
Func XH at head of files ..................................................................................................................................... 158
Function Codes
 in keyboard tables, 76
 in programs, 76

Index                                                                                                                            203



Function Command .............................................................................................................................................. 22
Functions .................................................................................................................................................. 39, 42–43
 AK and SH, 167
 BX, 4
 CO, 19, 22
 IV, 165
 NI, 44
 NO, 17
 Q2, 4
 search for, 43
Functions, executing ............................................................................................................................................. 76
Functions List, from U2 File .............................................................................................................................. 169

v G v 
Get Text ................................................................................................................................................................ 55
gl .......................................................................................................................................................................... 59
GO to Label .......................................................................................................................................................... 59
gt .......................................................................................................................................................................... 55
GT ...................................................................................................................................................................... 163
Guillemets ............................................................................................................................................................ 10

v H v 
Help, getting .......................................................................................................................................................... iii
Robert Holmgren ........................................................................................................................................ 131, i, iv
Hyphenation Exception Dictionary ........................................................................................................................ 9

v I v 
i-circumflex—î (ASCII 238) containment operator ............................................................................................. 68
if ........................................................................................................................................................................... 56
IF .......................................................................................................................................................................... 56
Immediate Commands .......................................................................................................................................... 77
InSert phrase ......................................................................................................................................................... 55
Introduction to Customization ................................................................................................................................ 1
is ........................................................................................................................................................................... 55

v J v 
jmp ....................................................................................................................................................................... 66
JuMP .................................................................................................................................................................... 66

v K v 
kb load ID ............................................................................................................................................................. 16
Key Definitions .................................................................................................................................................... 18
Key Numbers ........................................................................................................................................................ 17
Keyboard Customization ...................................................................................................................................... 13
Keyboard diagrams .............................................................................................................................................. 14

204                                                                                                                             Index



Keyboard Functions ....................................................................................................................................... 21, 42
Keyboard Functions (definition) .......................................................................................................................... 13
Keyboard State (definition) .................................................................................................................................. 13
Keyboard States ................................................................................................................................................... 17
Keyboard Table
 change key assignments for Ctrl, Shift, Alt, Caps, 23
 creating new tables, 23
 insert word, 20
 search for command brackets, 22
Keyboard Table (definition) ................................................................................................................................. 13
Keys Available for User Keyboard Definition ................................................................................................... 164
Keytweak .............................................................................................................................................................. 23

v L v 
LaBel .................................................................................................................................................................... 58
Labels ................................................................................................................................................................... 96
lb .......................................................................................................................................................................... 58
ldlib command .................................................................................................................................................. 5, 41
ldpm command. ...................................................................................................................................................... 6
load command .................................................................................................................................................... 5–6
load ID ....................................................................................................................................................... 6, 15–16
Load Program on Ampersand Phrase ............................................................................................................. 41, 99
Load Program on Phrase Key ............................................................................................................................... 41
Load program on Phrase Key ............................................................................................................................... 98

v M v 
Macro Express ............................................................................................................................................ 100, 170
Macros .................................................................................................................................................................. 46
Mathematical Operators ....................................................................................................................................... 67
Message Boxes ..................................................................................................................................................... 97
Miscellany of XPL Information ......................................................................................................................... 158
Mix Text and Phrase Number ............................................................................................................................ 162
Multiple Options in Programs .............................................................................................................................. 94

v N v 
Naming Programs ................................................................................................................................................. 96
NB Daylight font .................................................................................................................................................... v
NB.DFL .................................................................................................................................................................. 6
NB.INI ................................................................................................................................................................... 9
NBKEY.KEY .................................................................................................................................................. 16, iv
NBSTART.INT ...................................................................................................................................................... 3
 for loading programs, 5
Negation Wildcard ............................................................................................................................................. 160
Nota Bene users’ list ............................................................................................................................................. iv
 subscribing, iv

Index                                                                                                                            205



v O v 
Online Resources ................................................................................................................................................... iv
Operators ...................................................................................................................................................... 77, 106
@ Operators ......................................................................................................................................................... 70
 @siz, 69
 @cnv, 70
 @upr, 69
String Operators ................................................................................................................................................... 68
Comparative Operators ........................................................................................................................................ 67

v P v 
p (pause command) .............................................................................................................................................. 73
Page Breaks, remove ............................................................................................................................................ 25
Paragraph Marker ........................................................................................................................................... 74, 77
 search, save, insert, 77
Parse String .......................................................................................................................................................... 60
Pause .................................................................................................................................................................... 73
Penticoff—Rick Penticoff’s users’ website ............................................................................................................ ii
Personal Spell Checker ......................................................................................................................................... 11
Phrase Keys
 Extended phrases, 47
Phrase Libraries .............................................................................................................................................. 10, 92
 load whole library on one key, 87, 158
Place marker like NB4’s ....................................................................................................................................... 26
Plus Operator ........................................................................................................................................................ 51
Program Calls ........................................................................................................................................... 46–47, 50
Program to copy from one window to adjacent one ............................................................................................. 46
Program to insert command brackets in program ................................................................................................. 61
Program to load Ampersand Phrases .................................................................................................................. 100
Program to make PFUNC embed codes ............................................................................................................... 91
Program using parsing .......................................................................................................................................... 85
Program using subroutine—Loop till * is struck .................................................................................................. 86
Program-Recording Mode .............................................................................................................................. 43–44
 Toggle on/off, 44
Put Variable .......................................................................................................................................................... 54
pv .......................................................................................................................................................................... 54

v R v 
rc .......................................................................................................................................................................... 63
Read Character ..................................................................................................................................................... 63
Remove Hard Page Breaks ................................................................................................................................... 25
Replacement Dictionary / Phrase Library, for programming ................................................................................ 92
Resources, Online .................................................................................................................................................. iv
Rick Penticoff’s users’ website .............................................................................................................................. ii
rk .......................................................................................................................................................................... 63
RK and Branching .............................................................................................................................................. 160
Routine to branch to Y/N ..................................................................................................................................... 69
Routine to change curly quotes to straight ............................................................................................................ 90
Routine to read keyboard input ............................................................................................................................ 64
Routine to read Y/N from keyboard ..................................................................................................................... 93

206                                                                                                                             Index



Runcode ............................................................................................................................................................. 167
Running Programs .......................................................................................................................................... 40, 98
 from ampersand phrases, 99
 from command line, 98
 from keyboard key, 98
 from a Library file
  using numbers as arguments|, 101
  using text as arguments|, 102
 from Macro Express menus, 100
 from XYWWWEB.U2, 100

v S v 
SA% ................................................................................................................................................................... 161
salib command ...................................................................................................................................................... 41
Sample Programs .................................................................................................................................................. 80
Save eXpression ................................................................................................................................................... 51
Save to sx Phrase using Double Quotes ............................................................................................................. 163
Save Variable ....................................................................................................................................................... 50
Saving to a Phrase ................................................................................................................................................ 50
Search Switches .................................................................................................................................................. 159
Searching for Command Brackets ........................................................................................................................ 93
Searching for Commands ..................................................................................................................................... 75
Searching for Function Codes ...................................................................................................................... 76, 163
Searching for Functions ........................................................................................................................................ 75
Searching for Special Characters .......................................................................................................................... 75
Setting Defaults in Programs ................................................................................................................................ 93
SG—Run all phrases from one key .................................................................................................................... 158
Size ....................................................................................................................................................................... 69
Spell Checker ....................................................................................................................................................... 11
State Tables .......................................................................................................................................................... 17
Straight Double Quotes in Programs .................................................................................................................. 169
String (definition) ................................................................................................................................................. 49
su .................................................................................................................................................................... 50, 52
SUbroutine ........................................................................................................................................................... 52
Suppressing Display ............................................................................................................................................. 74
Suppressing Error Messages ................................................................................................................................ 95
sv .......................................................................................................................................................................... 50
sv# ........................................................................................................................................................................ 51
Switches ............................................................................................................................................................. 159
sx .................................................................................................................................................................... 50–51
System Path ............................................................................................................................................................ 2
System Path Commander(Freeware) ...................................................................................................................... 3

v T v 
Tabs ...................................................................................................................................................................... 79
Jukka-Pekka Takala ....................................................................................................................................... 25, i, v
Tilde ..................................................................................................................................................................... 79
Topical List of Keyboard Functions ..................................................................................................................... 27
Troubleshooting .............................................................................................................................................. 96, iii
Tutorial .................................................................................................................................................................. iv

Index                                                                                                                            207



v U v 
Unnamed File, Call ............................................................................................................................................. 159
Uppercase ............................................................................................................................................................. 69
Users’ website ........................................................................................................................................................ ii

v V v 
va .......................................................................................................................................................................... 71
va @# ................................................................................................................................................................... 48
VA Operator
 new extensions, 162
Value command .................................................................................................................................................... 71
Values ................................................................................................................................................................... 71
Variables: Compendium of Xy4/XyWin/NBWin Variables ............................................................................... 131

v W v 
Wait command ..................................................................................................................................................... 73
Wait Variable ..................................................................................................................................................... 158
Wildcard lists ............................................................................................................................................... 61, 107
Wildcards—® and ¯ ........................................................................................................................................... 160
Words with Apostrophes .................................................................................................................................... 169
Working Messages ............................................................................................................................................... 95
Writing for Public Use ......................................................................................................................................... 93
Writing Programs ................................................................................................................................................. 88

v X v 
XPL ........................................ 2–3, 10–13, 24, 39, 45, 47, 52, 76, 87, 90, 92, 98, 158–59, 161, 166–67, 170, i–iv
XPL Information, Miscellany ............................................................................................................................. 158
xs .......................................................................................................................................................................... 60
xs—Program using parsing .................................................................................................................................. 85
XyWrite Programming User's Guide ..................................................................................................................... iv
XYWWWEB.U2 ................................................................. 4, 16, 42, 47, 64, 96, 100–101, 106, 164, 167, 169, iv
 add programs to U2, 164

v Z v 
Zoom by 1% ......................................................................................................................................................... 25

208                                                                                                                             Index


